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I. BOGOLIUBOV-DE GENNE EQUATION

A. Pairing Hamiltonian in real space

In this chapter, we study superconductors that do not
have a uniform electronic structure. This happens, for
example, if the superconductor has vortices, a surface,
or an interface with another material. Without transla-
tion symmetry, momentum is no longer a good quantum
number. Therefore, we start with a pairing interaction
with space variables,

Hee = −Ve

∫
dV ψ†↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r). (1)

Define the pairing potential as

∆(r) = −Ve〈ψ↓(r)ψ↑(r)〉, (2)

which is similar to the gap function defined in Chap 4.
Then the quartic term can be decomposed as

−Veψ
†
↑ψ

†
↓ψ↓ψ↑ ' ∆(r)ψ†↑ψ

†
↓ + ∆∗(r)ψ↓ψ↑. (3)

The mean-field Hamiltonian becomes

Heff =
∫
dV

{∑
s

ψ†sH0ψs + ∆(r)ψ†↑ψ
†
↓ + ∆∗(r)ψ↓ψ↑

}
,

(4)
where

H0 =
1

2m

(
p +

e

c
A
)2

+ U(r)− µ, (5)

in which U(r) is an external potential.
We will use the eigenstates of H0 without A as basis,(

p2

2m
+ U − µ

)
wn = εnwn. (6)

Because of the Kramer degeneracy, each eigenvalue εn is
two-fold degenerate: wn(r) ⊗ | ↑〉 and w∗n(r) ⊗ | ↓〉 have
the same energy.

The BCS state is generalized as

|ψG〉 =
∏
n

(
un + vnc

†
n↑c

†
n↓

)
|0〉, (7)

where c†n↓|0〉 is a time-reversed state of c†n↑|0〉, which
creates the state wn(r)⊗ | ↑〉.

B. Bogoliubov-de Gennes equation

The pairing Hamiltonian Heff is not diagonal under
the eigenstate basis of H0. We wish to diagonalze Heff

using a generalized Bogoliubov-Valatin transformation
(here we follow de Gennes’ convention in Ref. 1 while
writing the coefficients un and vn),

ψ↑(r) =
∑

n

(
un(r)γn↑ − v∗n(r)γ†n↓

)
,

ψ↓(r) =
∑

n

(
v∗n(r)γ†n↑ + un(r)γn↓

)
. (8)

We have to choose un and vn such that

Heff =
∑
ns

Enγ
†
nsγns, (9)

and

{γns, γ
†
n′s′} = δnn′δss′ ,

{γns, γn′s′} = 0. (10)

This leads to

iγ̇ns = [γns,Heff ] = Enγns,

iγ̇†ns =
[
γ†ns,Heff

]
= −Enγ

†
ns. (11)

On the other hand, from Eq. (4), one has

iψ̇↑(r) = [ψ↑(r),Heff ] = H0ψ↑(r) + ∆(r)ψ†↓(r),

iψ̇↓(r) = [ψ↓(r),Heff ] = H0ψ↓(r)−∆(r)ψ†↑(r).(12)

Rewrite ψ’s using γ’s and compare with Eq. (11). One
can get

H0un(r) + ∆(r)vn(r) = Enun(r),
H∗

0vn(r)−∆∗(r)un(r) = −Envn(r). (13)

This is called the Bogoliubov-de Gennes (BdG) equa-
tions. They can be written in the following matrix form,(

H0 ∆
∆∗ −H∗

0

)(
un

vn

)
= En

(
un

vn

)
. (14)

A few remarks are in order:
First, if (un, vn)T is a solution with energy En, then

(−v∗n, u∗n) is a solution with energy −En. But we only
keep the positive excitation energy.
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Second, for a uniform system,

un(r) = uke
ik·r,

vn(r) = vke
ik·r. (15)

In this case, the BdG equation immediately gives us the
Ek and (uk, vk) in Chap 4.

Third, if ∆ = 0, then

H0un = εnun,

H0vn = −εnvn, (16)

so that (un, vn) are the electron and hole eigenfunctions
for the normal state.

The pairing potential in the BdG equation is unknown,

∆(r) = Ve〈ψ↑(r)ψ↓(r)〉

= Ve

∑
n

unv
∗
n

(
1− 〈γ†n↑γn↑〉 − 〈γ†n↓γn↓〉

)
= Ve

∑
n

unv
∗
n(1− 2fn), (17)

where fn = 1/(eβEn +1), β ≡ 1/kBT . It has to be solved
self-consistently in conjunction with Eq. (14).

Finally, to evaluate a one-body observable, one needs

〈Â〉(r) =
∑

s

〈ψ†sÂψs〉

=
∑

n

〈(
u∗nγ

†
n↑ − vnγn↓

)
Â
(
unγn↑ − v∗nγ

†
n↓

)〉
+
∑

n

〈(
vnγn↑ + u∗nγ

†
n↓

)
Â
(
v∗nγ

†
n↑ + unγn↓

)〉
= 2

∑
n

[
u∗n(r)Âun(r)fn + vn(r)Âv∗n(r)(1− fn)

]
.(18)

C. Current-carrying state

The superconductor condensate is moving after a
Galilean boost,

ψs(r) → eiq·rψs(r). (19)

For a uniform system in equilibrium,

ψ↑(r) =
∑

k

[
uk(r)γk↑ − v∗k(r)γ†k↓

]
. (20)

Therefore one needs to choose

uk(r) = uke
i(k+q)·r,

vk(r) = vke
i(k−q)·r. (21)

Also,

∆(r) = ∆e2iq·r. (22)

The BdG equation (for U(r)=0) is(
εk+q ∆
∆ −εk−q

)(
uk

vk

)
= Ek

(
uk

vk

)
, (23)

which has the eigenvalues,

Ek =
εk+q − εk−q

2
+

[(
εk+q + εk−q

2

)2

+ ∆2

]1/2

. (24)

For q ' ∆/~vF � εF ,

Ek ' E0
k +

~2

m
k · q, (25)

in which E0
k is the excitation energy without current.

The excitation energy for the current-carrying state could
drop to zero when the current reaches a critical velocity

~qc
m

=
∆
pF

≡ vc. (26)

Notice that if ∆ itself depends on q, then its value
needs to be solved self-consistently using

1 = Ve

∑
k

1− fk+q − fk−q

2Ek
. (27)

It’s possible that when the current destroys Ek, ∆ may
still be finite. In this case, we have a gapless supercon-
ductor (Zagoskin, p.182).

The eigenstates are

u2
k =

1
2

+
1
2

εk+q+εk−q

2√(
εk+q+εk−q

2

)2

+ ∆2

' 1
2

(
1 +

ε̃k

E0
k

)

v2
k ' 1

2

(
1− ε̃k

E0
k

)
, (28)

where ε̃k ≡ εk + v · ~k. From this we can calculate the
current density with Eq. (18). First, we need

u∗k(r)
p
m
uk(r) =

~(k + q)
m

|uk|2,

vk(r)
p
m
v∗k(r) = −~(k− q)

m
|vk|2. (29)

The current density then follows as

j = 2e
∑

k

[
u∗k(r)

p
m
uk(r)fk + vk(r)

p
m
v∗k(r)(1− fk)

]
' 2

e~
m

∑
k

[
(k + q)|uk|2fk − (k− q)|vk|2(1− fk)

]
,(30)

in which Ek ' E0
k+v·~k inside the distribution function.

In general, for a non-uniform but slowly-varying cur-
rent distribution, one can write (see p. 384 of Ref. 3)

∆(r) = ∆eiθ(r)

uk(r) = uke
ik·r+iθ(r)/2

vk(r) = vke
ik·r−iθ(r)/2. (31)
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D. Gauge transformation

Recall that the Schrodinger equation,

1
2m

(
p +

e

c
A
)2

ψ = Eψ, (32)

is invariant under the following gauge transformation,

A → A′ = A +∇χ,
ψ → ψ′ = e−i e

~c χ(r)ψ. (33)

Similarly, the BdG equation in Eq. (14) is invariant under

A → A′ = A +∇χ,(
u
v

)
→
(
u′

v′

)
=
(
e−i e

~c χ(r)u
e+i e

~c χ(r)v

)
∆ → ∆′ = e−2i e

~c χ(r)∆. (34)

The pair potential ∆ needs to remain single-valued be-
fore and after the gauge transformation. For a supercon-
ductor ring, this requires (2e/~c)(χ(2π) − χ(0)) = 2πm,
where m is an integer.

It is possible to remove the phase factor of ∆(r) in
Eq. (31) after a gauge transformation. One can choose

χ(r) = −~c
2e
θ(r). (35)

This also removes the phase θ(r) in uk(r) and vk(r). No-
tice that before the gauge transformation, the probabil-
ity amplitudes uk(r) and vk(r) are single-valued. After

the gauge transformation, however, the probability am-
plitudes are multiplied by (−1)n after one circle, where
n is the flux quanta in the ring (see p. 152 of Ref. 1).

II. STRUCTURE OF A VORTEX

Consider a vortex line along the z-axis. Its structure is
determined by the BdG equation. Choose the cylindrical
coordinate and write

∆(r) = |∆(r)|e−iφ (36)

u(r) = ei(µ−1/2)φeikzzunµkz
(r)

v(r) = ei(µ+1/2)φeikzzvnµkz (r),

in which n is the quantum number for the radial direc-
tion. In order for u(r) and v(r) to be single-valued around
the azimuthal angle, the angular momentum quantum
number µ has to be an half-integer.

Substitute u(r) and v(r) into the BdG equation, and
choose A = Aφφ̂, so that

(
p +

e

c
A
)2

= −~2 ∂
2

∂r2
−~2

r

∂

∂r
+
(

~
ir

∂

∂φ
+
e

c
Aφ

)2

−~2 ∂
2

∂z2
,

(37)
we will get

− ~2

2m

(
∂2

∂r2
+

1
r

∂

∂r

)
unµkz

+
~2

2m

(
µ− 1/2

r
+

e

~c
Aφ

)2

unµkz
+
(

~2k2
z

2m
− εF

)
unµkz

+ |∆|vnµkz
= Enµkz

unµkz
,(38)

− ~2

2m

(
∂2

∂r2
+

1
r

∂

∂r

)
vnµkz

+
~2

2m

(
µ+ 1/2

r
− e

~c
Aφ

)2

vnµkz
+
(

~2k2
z

2m
− εF

)
vnµkz

− |∆|unµkz
= −Enµkz

vnµkz
.

This has to be solved in conjunction with

∆(r) = Ve

∑
Enµkz <~ωc

unµkz
(r)v∗nµkz

(r) [1− 2f(Enµkz
)] .

(39)
Some nice numerical results of this calculation can be
found in Ref. 4.

After the coupled equations are solved, the eigenvalues
Enµkz could give the energy of the bound states inside
the vortex, and the eigenstates (unµkz , vnµkz ) determine
the profile of ∆(r). An often used simplification is to
adopt an approximate but acceptable form of ∆(r), such
as

∆(r) =

{
∆0

r
ξ for r < ξc

∆0 for r > ξc
(40)

The parameter ξc can be determined self-consistently.
It is possible to solve approximately, but analytically,

the bound state energies deep inside the core of the vor-
tex. For example, on p. 386 of Ref. 3, one has (for the
lowest radial mode n, kz = 0),

Eµ ' µ×
∫∞
0

∆(ρ)
ρ e−2K(ρ)dρ∫∞

0
e−2K(ρ)dρ

, (41)

in which ρ ≡ k⊥r =
√
k2

F − k2
zr, and K(ρ) =

m
~2k2

⊥

∫ ρ

0
dρ′∆(ρ′). That is, the bound state energies are

proportional to the half integer µ (see Fig. 1)). Recall
that it is a half integer because of the boundary condi-
tion around the azimuthal angle φ.

In certain systems, an electron spin would couple with
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FIG. 1 The bound states within a vortex core.

its own orbital motion, so that when the electron cir-
cles once, the spin rotates by 2π. This adds a Berry
phase of π to the wave function. If this happens, then
the wave function changes sign after circling around the
vortex once. As a result, the bound state energy would
locate at integer values of µ. In particular, a single bound
state at µ = 0 cannot be easily perturbed away from zero
energy since it is protected by the particle-hole symmetry
of a superconductor state. Such a Majorana fermion
state can be found in a Rashba system in proximity with
a superconductor.

Once uα(r) and vα(r) are solved (α = n, µ, kz), one can
calculate things like the distribution of current density,
the local density of states (LDOS)... etc around the
vortex. For example, the current density is given by

Jφ(r) =
2e
m

∑
α

[
fα|uα|2

(
~
µ− 1/2

r
+
e

c
Aφ

)
(42)

+ (1− fα)|vα|2
(
−~

µ+ 1/2
r

+
e

c
Aφ

)]
.

The local density of states is given by

A(r, ω) =
1
2

∑
αs

[∣∣〈Ψα|ψ†s(r)|Ψ0

∣∣2 δ(ω − ωα0) (43)

+
∣∣∣〈Ψ̃α|ψs(r)|Ψ0

∣∣∣2 δ(ω + ωα0)
]
.

The manybody state Ψα (Ψ̃α) has one more (less) par-
ticle than the state Ψ0, and ωα0 is the energy difference
between state-α and state-0.

In a superconductor, the field operators are related to
the bogolon operators as follows (see Eq. (8)),

ψ↑ =
∑
α

(
uαγα↑ − v∗αγ

†
α↓

)
, (44)

ψ↓ =
∑
α

(
v∗αγ

†
α↑ + u∗αγα↓

)
.

N S

incident

ree

reh

FIG. 2 An electron incident on a N − S interface can be
reflected either as an electron or as a hole. The charge can
flow through the superconductor as a moving Cooper pair.

A direct calculation gives∑
s

∣∣〈Ψα|ψ†s(r)|Ψ0

∣∣2 = 2|uα|2, (45)

∑
s

∣∣∣〈Ψ̃α|ψs(r)|Ψ0

∣∣∣2 = 2|vα|2.

Therefore,

A(r, ω) =
∑
α

|uα|2δ(ω − ωα0) + |vα|2δ(ω + ωα0), (46)

where ωα0 = Eα. That is, adding an electron to state-α
gives a positive energy peak at Eα, with a weight |uα|2;
removing an electron from state-α gives a negative energy
peak at −Eα, with a weight |vα|2. The LDOS of a vortex
can be probed experimentally by Scanning Tunnelling
Microscope (STM) (e.g., Hess et al, PRL 1990).

III. ANDREEV REFLECTION

An electron impinging on an interface between two dif-
ferent materials could either be reflected or transmitted.
In 1964, while trying to explain an extra thermal resis-
tance in a Normal metal -Superconductor (NS) junction,
Andreev discovered a peculiar process: an electron im-
pinging on a NS interface from the N -side could be re-
flected as a hole, as shown in Fig. 2. At the mean time,
a Cooper pair with two electrons emerges on the S-side
and keep the charge flow going. Notice that the hole is
reflected back to the impinging path, similar to a phase-
conjugate mirror in nonlinear optics.

In the following, we will calculate the amplitudes
of reflection and transmission using the BdG equation.
Firstly, assume the pairing potential is a step function,
∆(r) = ∆0θ(x). In reality, the magnitude of ∆(r) would
decrease near the boundary of the superconductor. Such
a change is neglected here. The BdG equation on both
sides of the interface is(

H0 ∆
∆ −H0

)(
un

vn

)
= En

(
un

vn

)
. (47)
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Since the system is uniform along the interface, we can
choose

un(r) = u(x)eikyy+ikzz, (48)
vn(r) = v(x)eikyy+ikzz.

It is not difficult to see that, the BdG equation for ψ(x) =
(u(x), v(x))T are similar to the one above. One only
needs to replace the µ in H0 with µ′ = µ− (k2

y +k2
z)/2m.

On the N -side (x < 0) with ∆(r) = 0, u(x) and v(x)
decouple with each other, so that the electron travelling
wave and hole travelling wave are

ψ±e (x) = e±ik+x

(
1
0

)
, (49)

ψ±h (x) = e±ik−x

(
0
1

)
.

They are accompanied with different dynamic phases:
e−iEt/~ for electron, and eiEt/~ for hole, so ψ+

h is ac-
tually moving to the left, not to the right. The momenta
k± are defined via

±E =
~2

2m
(
k2
± + k2

y + k2
z

)
− µ =

~2k2
±

2m
− µ′. (50)

That is,

k± =
√

2m
√
µ′ ± E. (51)

On the S-side (x > 0), u(x) and v(x) couple with each
other and the eigenstates are bogolon states,

ψ±eb(x) = e±iq+x

(
u
v

)
, (52)

ψ±hb(x) = e±iq−x

(
−v
u

)
.

The momenta q± are defined via

±
√
E2 −∆2

0 =
~2q2±
2m

− µ′, (53)

so that

q± =
√

2m

√
µ′ ±

√
E2 −∆2

0. (54)

The travelling wave would become evanescent wave if
E < ∆0.

For an electron impinging from the left, one has

ψL(x) = ψ+
e + reeψ

−
e + rehψ

+
h , (55)

ψR(x) = teeψ
+
eb + tehψ

−
hb.

The boundary condition is

ψL(0) = ψR(0), (56)
ψ′L(0) = ψ′R(0).

R

E

1

Δ

FIG. 3 The hole reflectivity as a function of energy. For a
transparent interface, the incident electron is always reflected
as a hole when E < ∆

After a lengthy calculation, one can get

reh =
2

u
v

q−+k−
q++q−

(
1 + q+

k+

)
+ v

u
q+−k−
q++q−

(
1− q−

k+

) . (57)

This is the probability amplitude for an electron to turn
into a hole upon reflection. The other coefficients ree, tee,
and teh can also be obtained accordingly (see p. 188 of
Ref. 2).

Finally, we still need to solve for the amplitudes (u, v).
Substitute (

u(x)
v(x)

)
= e±iq+x

(
u
v

)
(58)

to the BdG equation. One would get the familiar expres-
sions,

u2 =
1
2

(
1 +

ε

E

)
=

1
2

(
1 +

√
1− ∆2

E2

)
, (59)

v2 =
1
2

(
1− ε

E

)
=

1
2

(
1−

√
1− ∆2

E2

)
.

For µ′ � E and ∆0, k± ' q± '
√

2mµ′ ≡ k′F , and

k+ − q− ' q+ − k− ' k′F
u

v

∆0

2µ′
. (60)

Therefore,

reh '
1

u
v

[
1 +

(
∆0
2µ′

)2
] ' v

u
, (61)

and the reflectivity

R ≡ |reh|2 =

 E−
√

E2−∆2
0

E+
√

E2−∆2
0

for E > ∆0

1 for E ≤ ∆0

(62)

When E < ∆0, the electron would always turn into a
hole upon reflection (see Fig. 3). However, this is true
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Δ(x)
N S

x

ξsξN

FIG. 4 The pairing potential ∆(x) near a N − S interface.

only for a transparent interface. If one adds an additional
barrier Zδ(x) at the interface, then the electron has some
probability amplitude ree to be reflected as an electron
via the usual specular reflection. More details can be
found in Ref. 5.

As we mentioned earlier, in reality, ∆(r) would not be
a step function near the interface. Its actual form can be
obtained be solving the BdG equation and the pairing
potential together. For a schematic plot of ∆(x), see
Fig. 4. Notice that the pairing potential spills over into
the normal metal, so that the metallic electron near the
interface would also be superconducting. This is called
the proximity effect. The length scales of ξN and ξS
are roughly the same as the coherence length of the
superconductor. It is of the order of 1 µm for type-I
superconductors.

IV. QUANTUM TUNNELLING

We now consider a SIS structure, in which a thin layer
of insulator is sandwiched between two superconductors.
If the insulator is thin enough, then the condensate wave
function from two sides would overlap with each other.
This could cause two types of quantum tunnelling: single-
particle tunnelling and Cooper-pair tunnelling. The lat-
ter, usually called the Josephson tunnelling, is a co-
herent process that depends on the phase difference of
the two superconductor condensates.

We will start from the basics of perturbation theory.
First divide the Hamiltonian into three parts,

H = HL +HR +HT . (63)

The superconductor on the left (HL) couples with the
one on the right (HR) because of HT . The tunnelling
Hamiltonian is of the form,

HT =
∑
pqs

(
tpqa

†
psbqs + t∗pqb

†
qsaps

)
, (64)

in which a† (b†) is the creation operator for the left (right)
superconductor. The electron spin would not flip during
the tunnelling.

The particle number operator for the left part is

NL =
∑
ps

a†psaps. (65)

The current operator is

I = (−e)ṄL (66)

= −e i
~
[H,NL] = −e i

~
[HT , NL],

where we have assumed (as others did) that [HL, NL] =
0. Carry out the commutator, one will get

I = i
e

~
∑
pqs

(
tpsa

†
psbqs − t∗pqb

†
qsaps

)
. (67)

Its thermal average is

〈I〉 =
∑

n

Pn〈Ψn|I|Ψn〉, Pn =
e−βEn

Z
, (68)

in which Ψn and En are the eigenstates and eigen-
energies for the whole system.

In the absence of tunnelling,

(HL +HR)|Ψ0
n〉 = E0

n|Ψ0
n〉, (69)

where |Ψ0
n〉 = |L0〉 ⊗ |R0〉, and E0

n = E0
L + E0

R. The
tunnelling part is treated as a perturbation, and

|Ψn〉 ' |Ψ0
n〉+

∑
m6=n

|Ψ0
m〉〈Ψ0

m|HT |Ψ0
n〉

E0
n − E0

m + iδ
. (70)

We have added an infinitesimal iδ to prevent the diver-
gence due to a continuous spectrum.

Since there can be no current in the absence of tun-
nelling, the zeroth order current is zero,

〈Ψ0
n|T |Ψ0

n〉 = 0. (71)

The first order current is

〈I〉 =
∑

n

Pn(〈Ψ0
n|I|Ψ1

n〉+ 〈Ψ1
n|I|Ψ0

n〉) (72)

=
∑
nm

Pn

(
〈Ψ0

n|I|Ψ0
m〉〈Ψ0

m|I|Ψ0
n〉

E0
n − E0

m + iδ
+ h.c.

)
.

Substitute the HT in Eq. (64) to the equation above. Af-
ter some tedious rearrangement, we have (the superscript
0 is now omitted for brevity)

〈I〉 = i
e

~
∑
nm

∑
pqs

∑
p′q′s′

Pn (73)

×
[
tpqtp′q′〈Ψn|a†psbqs|Ψm〉〈Ψm|a†p′s′bq′s′ |Ψn〉D+

nm

− t∗pqt
∗
p′q′〈Ψn|b†qsaps|Ψm〉〈Ψm|b†q′s′ap′s′ |Ψn〉D+

nm

+ tpqt
∗
p′q′〈Ψn|a†psbqs|Ψm〉〈Ψm|b†q′s′ap′s′ |Ψn〉D−

nm

− t∗pqtp′q′〈Ψn|b†qsaps|Ψm〉〈Ψm|a†p′s′bq′s′ |Ψn〉D−
nm

]
,
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in which

D±
nm ≡ 1

En − Em + iδ
± 1
En − Em − iδ

. (74)

One can get some feeling of particle motion from the
expression above. Recall that operator-a (-b) is for parti-
cles to the left (right) of the insulator. For the third line
within the square bracket, start from |Ψn〉 on the right
end, an electron first moves from left to right (b†q′s′ap′s′),
and then from right to left (a†psbqs). The fourth line has a
similar tunnelling process, but the direction is reversed.
These two lines account for the single-particle tunnelling
(designated as 〈I2〉).

On the other hand, for the first (second) line, in each
bracket an electron jump from right to left (left to right).
So they represent Cooper-pair tunnelling (designated as
〈I1〉).

A. Single-particle tunnelling

We will start from the single-particle tunnelling. No-
tice that

D−
nm = −2πiδ(En − Em), (75)

so that the last two lines of Eq. (73) give

〈I2〉 = 2π
e

~
∑
nm

∑
pqs

Pn|tpq|2 (76)

×
[
|〈Ψm|b†qsaps|Ψn〉|2 − |〈Ψm|a†psbqs|Ψn〉|2

]
δ(En − Em).

Unperturbed |Ψn〉 and |Ψm〉 are direct product of L and
R states, therefore

|〈Ψm|b†qsaps|Ψn〉|2 = |〈R′|b†qs|R〉|2|〈L′|aps|L〉|2. (77)

Also,

En − Em = EL + ER − (EL′ + ER′), (78)

δ(En − Em) =
∫
dωδ(ω ± (EL′ − EL))δ(ω ∓ (ER′ − ER)),

and Pn =
e−βEL

ZL

e−βER

ZR
= PLPR.

Define

A≷
ωps =

∑
LL′

PL|〈L′|aps|L〉|2δ(ω ∓ (EL′ − EL)), (79)

A≷
ωqs =

∑
RR′

PR|〈R′|b†qs|R〉|2δ(ω ∓ (ER′ − ER)).

Then Eq. (76) can be simplified as

〈I2〉 =
2πe
~

∫
dω
∑
pqs

|tpq|2
(
A<

ωpsA
>
ωqs −A>

ωpsA
<
ωqs

)
.

(80)

For non-interacting particles,

〈L′|aps|L〉 6= 0 only if |L′〉 = aps|L〉. (81)

Therefore,

A<
ωps =

∑
L

PL〈L|n̂ps|L〉δ(ω − εp) (82)

= fpδ(ω − εp).

Similarly,

A>
ωqs = (1− fq)δ(ω − εq). (83)

Finally,

〈I2〉 =
2πe
~
∑
pqs

|tpq|2 [fp(1− fq)− fq(1− fp)] δ(εp − εq).

(84)
This non-interacting result can also be derived by the
Fermi golden rule. A current flows only if there is an
unbalance in the distribution functions, fp and fq, which
is usually caused by an external bias.

In order to evaluate A>,< for the condensate state, it is
more convenient to write the a and b operators in terms
of bogolon operators. For example,

ap↑ = upγp↑ + vpγ
†
−p↓, (85)

a†−p↓ = −v∗pγp↑ + upγ
†
−p↓.

It is left as an exercise to show that

A<
ωp↑ = u2

pfpδ(ω − εp) + |vp|2(1− fp)δ(ω + εp) = A<
ωp↓,

(86)
where εp is the bogolon energy, and

A>
ωq↑ = u2

q(1− fq)δ(ω − εq) + |vq|2fqδ(ω + εq) = A>
ωq↓.

(87)
Their sum is the usual spectral function,

Aωps = A>
ωps +A<

ωps (88)

= u2
pδ(ω − εp) + |vp|2δ(ω + εp).

Notice the similarity with the LDOS in Eq. (43). If ∆ =
0, then these bogolons become the usual electron and
hole,

Aωps = δ(ω − εp) + δ(ω + εp). (89)

B. Cooper-pair tunnelling

We now calculate the first two lines within the square
bracket of Eq. (73). According to Eq. (74),

D+
nm = 2P 1

En − Em
, (90)

where P 1
x takes the principle value of 1

x . Notice that
since there is no delta function (as in D−

nm), the interme-
diate states |Ψm〉 are allowed to have energies different
from En.
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Rewriting the electron operators as bogolon operators,
we have∑

pqs

tpqa
†
psbqs (91)

=
∑
pq

(
tpqa

†
p↑bq↑ + t∗pqa

†
−p↓b−q↓

)
, t−p−q = t∗pq

=
∑
pq

tpq(upuqγ
†
pγq︸ ︷︷ ︸

1

+upvqγ
†
pγ

†
−q︸ ︷︷ ︸

2

+ v∗puqγ−pγq︸ ︷︷ ︸
3

+ v∗pvqγ−pγ
†
−q︸ ︷︷ ︸

4

)

+ t∗pq(v
∗
pvqγpγ

†
q︸ ︷︷ ︸

5

− v∗puqγpγ−q︸ ︷︷ ︸
6

−upvqγ
†
−pγ

†
q︸ ︷︷ ︸

7

+upuqγ
†
−pγ−q︸ ︷︷ ︸
8

).

It is not difficult to see that, in the product

〈Ψn|
∑
pqs

tpqa
†
psbqs|Ψm〉〈Ψm|

∑
p′q′s′

tp′q′a
†
p′s′bq′s′ |Ψn〉,

(92)

the only non-zero terms are 1×5′, 2×6′, 3×7′, and 4×8′.
For example,∑

m

〈Ψn|γ†pγq|Ψm〉〈Ψm|γp′γ
†
q′ |Ψn〉 (93)

= 〈Ψn|γ†pγqγp′γ
†
q′ |Ψn〉, (Em − En = εq − εp)

= 〈L|γ†pγp′ |L〉〈R|γqγ
†
q′ |R〉

→ fp(1− fq)δpp′δqq′ after
∑

n

Pn.

Let the phases of the two condensates be different,

vp = |vp|eiθ1 , (94)

vq = |vq|eiθ2 .

After some calculations, the Josephson current is found
to be

〈I1〉 = i
e

~
∑
nm

Pn〈Ψn|
∑
pqs

tpqa
†
psbqs|Ψm〉〈Ψm|

∑
p′q′s′

tp′q′a
†
p′s′bq′s′ |Ψn〉2P

1
En − Em

− h.c. (95)

= i
e

~
∑
pq

|tpq|2upuq|vpvq|e−i(θ1−θ2)

× 2
[
fp(1− fq)
εp − εq

+
fpfq

−εp − εq
+

(1− fp)(1− fq)
εp + εq

+
(1− fp)fq

−εp + εq

]
− h.c.

= 4
e

~
∑
pq

|tpq|2|upuqvpvq| sin(θ1 − θ2)
(
fp − fq

εp − εq
+

1− fp − fq

εp + εq

)
.

Subsequently, we use

|upvp| =
∆1

2εp
, (96)

and ∑
p

= V1

∫
d3p

(2π)3
=
∫ ∞

−∞
dε0p

Nn1(ε
0
p)

2
(97)

=
∫ ∞

0

dεpNs1(εp),

where Nn(ε0) is the DOS for a normal metal, and

Ns(ε) = Nn(ε0)
ε√

ε2 −∆2
θ(ε−∆). (98)

As a result, the Josephson current can be written as

〈I1〉 =
2e
~

∫ ∞

∆1

dε1

∫ ∞

∆2

dε2Ns1(ε1)Ns2(ε2)|t2|
∆1∆2

ε1ε2
(99)

× sin(θ1 − θ2)
(
f1 − f2
ε1 − ε2

+
1− f1 − f2
ε1 + ε2

)
,

where

|t2| ≡
∫
dΩ1

4π

∫
dΩ2

4π
|tpq|2 (100)

is an average over the solid-angle of both Fermi surfaces.
After re-written the DOS Ns1 , Ns2 as Nn1 , Nn2 , the

energy integrals can be evaluated by the method of con-
tour integration. For details, one can see p.551 of Ref. 6.
Here we only give the result: Define

Gn =
e2

~
Nn1Nn2 |t2|, (101)

which is the conductance of aNIN junction. If ∆1 = ∆2,
then the Josephson current is

〈I1〉 = Ic sin(θ1 − θ2), (102)

where

Ic =
π

2e
Gn∆ tanh (β∆/2) . (103)

This is called the Ambegaokar-Baratoff formula.
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FIG. 5 Temperature dependence of the Josephson current.
Dashed line is for ∆1 = ∆2; solid line is for ∆1 = ∆2/2. The
figure is taken from Ambegaokar and Baratoff, Phys. Rev.
Lett. 10, 486 (1963).

If ∆1 6= ∆2, then Anderson showed that, for T � ∆1,2,

Ic =
2Gn

e

∆1∆2

∆1 + ∆2
K

(
|∆1 −∆2|
∆1 + ∆2

)
, (104)

where K(x)(x ∈ [0, 1]) is the elliptic integral of the first
kind. K(0) = π/2, and it increases monotonically till
x = 1, where it diverges.
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