
Chap 4 The theory of superconductor

Ming-Che Chang

Department of Physics, National Taiwan Normal University, Taipei, Taiwan

(Dated: May 7, 2013)

I. SCREENING OF ELECTRON INTERACTION

In Chap 3, we have derived the static dielectric func-
tion at long wave length,

εe(q) = 1 +
k2
0

q2
, (1)

where k2
0 = 4πe2D(εF ) is the Thomas-Fermi wave vector,

D(εF ) is the density of states at the Fermi energy. As
a result, the Coulomb interaction between electrons is
modified as

V0(q) =
4πe2

q2
→ V (q) =

4πe2

εe(q)q2
=

4πe2

q2 + k2
0

. (2)

By Fourier transforming back to the real space, we have
the modified interaction,

V (r) =
∫

d3q

(2π)3
eiq·rV (q) =

e2

r
e−k0r. (3)

This is a screened Coulomb interaction with a screening
length 1/k0.

The electrons in a solid is also under the influence of
positive ions. When one brings a surplus electron to a
location, it would not only repel the other electrons, but
also attract surrounding (mobile) ions. The screening of
ions also contributes to the dielectric function. If we ap-
proximate the ions as an ion gas, instead of a vibrating
lattice, then the analysis in Chap 3 can be applied di-
rectly. However, since the ions have a much larger mass
M than electron’s, they respond to the surplus electron
slowly. It is therefore more appropriate to employ the
dielectric function at high frequency,

εi(ω) = 1−
Ω2

p

ω2
, (4)

where Ω2
p = 4πne2/M is the plasma frequency for the ion

gas.
The total dielectric function felt by electrons is given

as

ε(q, ω) = 1 +
k2
0

q2
−

Ω2
p

ω2
. (5)

A rigorous argument that leads to this result can be found
in, e.g., Chap 26 of Ashcroft and Mermin’s. We will not
repeat the analysis here. This dielectric function can be
written in an alternative form,

1
ε(q, ω)

=
1

1 + k2
0/q

2
· ω2

ω2 − ω(q)2
, (6)

where ω(q)2 = Ω2
p/εe(q) is the screened ionic plasma fre-

quency, which is of the order of the Debye frequency ωD.
After including the contribution from mobile ions (or,

phonons), the effective Coulomb interaction is

Veff (q, ω) =
4πe2

ε(q, ω)q2
=

4πe2

q2 + k2
0

[
1 +

ω2(q)
ω2 − ω2(q)

]
.

(7)
This can be regarded as an effective interaction between
two electrons: q = k′ − k is the difference of their mo-
menta, and ~ω = |εk′ − εk| is the difference of their ener-
gies. Such a statement can be justified rigorously using
the manybody formulation of electron-phonon interac-
tions (see, e.g., Chap 17 of Bruus and Flensberg’s).

Because of the frequency dependent correction within
the square bracket in Eq. (7), the value of the interac-
tion can be negative, when ω < ω(q). This means that,
instead of repulsion, the two electrons could attract each
other, when their energy difference is less than ω(q). This
is called over screening, and is crucial to the formation
of Cooper pairs.

II. COOPER PAIR

For two electrons residing deep inside a Fermi sphere,
the over screening cannot take effect, since the two elec-
trons have nowhere to go. Only electrons near the Fermi
surface can stretch their legs and attract each other.
Cooper showed that such an attraction leads to a bound
state, no matter how weak the attraction is. His argu-
ment is as follows.

Consider two electrons with the following wave func-
tion,

Ψ(r1, r2) = ψ(ρ)eiq·R, (8)

in which ρ = r1 − r2 is the relative coordinate, and R
is the center-of-mass (c.m.) coordinate of two electrons.
Since the electrons are close to the Fermi surface, ac-
cording to the Fermi liquid theory, they are nearly free.
Therefore, the c.m. state can be considered as a plane
wave. Also, we consider only the state with q = 0, which
has the lowest c.m. energy.

The paired state satisfies the Schrodinger equation,(
p2
1

2m
+

p2
2

2m
+

1
V0

∑
k

V (k)eik·(r1−r2)

)
Ψ(r1, r2) = EΨ(r1, r2).

(9)
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Expand the paired state as,

Ψ(r1, r2) =
∑

k

gke
ik·(r1−r2), (10)

and substitute it to the Schrodinger equation, one can
get

2
~2k2

2m︸ ︷︷ ︸
ε0

k

gk +
1
V0

∑
k′

V (k− k′)gk′ = Egk. (11)

The interaction between electrons is assumed to have the
simplified form,

V (k− k′) =

{
−Ve if 0 < ε0k − εF and ε0k′ − εF < ~ωc

0 otherwise,
(12)

where ~ωc is a cut-off energy of the order of the Debye
energy ~ωD. As a result, Eq. (11) becomes

(
E − 2ε0k

)
gk = −Ve

V0

∑
k′∈ shell

gk′ . (13)

One can divide both sides of the equation by E − 2ε0k,
then sum over gk to get

1 = −Ve

V0

∑
k∈ shell

1
E − 2ε0k

(14)

' −VeD(εF )
∫ εF +~ωc

εF

dε
1

E − 2ε

=
Ve

2
D(εF ) ln

(
E − 2εF − 2~ωc

E − 2εF

)
,

in which D(εF ) is the density of states at Fermi energy,
and we have chosen an energy shell with thickness ~ωD

near the surface.
In most conventional superconductors, VeD(εF ) < 0.3.

One assumes VeD(εF ) � 1 (weak-coupling approxima-
tion) and gets

E ' 2εF − 2~ωce
−2/VeD(εF ). (15)

The second term is the binding energy of the two elec-
trons near the Fermi surface. Notice that the binding
energy is not analytic at Ve = 0. That is, one would
fail to get this result with a theory that treats Ve as a
perturbation parameter.

The eigen-states depend on gk, which is

gk =
C

E − 2ε0k
, where C = −Ve

V0

∑
k′

gk′ . (16)

Since this function depends on |k|, it is isotropic in k-
space. Therefore, the corresponding wave function in r-
space (see Eq. (8) with q = 0) is also isotropic. In order
for the Fermion wave function to change sign under an

exchange of particles, the spin part needs to be a singlet
(antisymmetric).

Two remarks are in order: First, the size of the Cooper
pair can be calculated via

ρ2
C =

∫
d3ρ|ψ(ρ)|2ρ2. (17)

This gives ρC = 2√
3

~vF

E , where E is of the order of kBTc

(see Ref. 1). Here we give an estimate based on the un-
certainty relation,

∆x ∼ ~
∆p
∼ ~

∆E/vF
, (18)

where ∆E ∼ kBTc. Therefore,

∆x ∼ ~vF

kBTc
∼ 1 µm. (19)

This is the coherence length of the superconductor.
The fraction of electrons condensed by the supercon-

ducting (SC) transition is about Tc/TF ∼ 10−4. There-
fore, the average spacing between condensed electrons is
about 10−2 µm. Within a Cooper pair radius (1 µm),
there are about 1/(10−2)3 ∼ 106 Cooper pairs. So the
Cooper pairs are very loosely bounded and mix with each
other to form a complex (but ordered) web.

Second, if V (k − k′) varies strongly with the angle
∠(k,k′), then there may be several bound states. They
are anisotropic states with more complicated spin depen-
dence (Ref. 1, p.96).

III. BCS WAVE FUNCTION

BCS theory is different from most of the theoretical
investigations in condensed matter physics. It does not
solve the wave function from a manybody Hamiltonian,
which is an extremely difficult task. Instead, one writes
down the wave function directly, then check to see if it
fits with the superconductivity in reality.

Let’s consider a partially filled energy band with N
electrons and M k-states (2M > N). A superconductor
ground state of these N electrons is likely to be

|ΨN 〉 =
∑
{k}

g(k1, k2, · · · , kN/2)c
†
k1↑c

†
−k1↓ · · · c

†
kN/2↑c

†
−kN/2↓|0〉.

(20)
We have written the operators in a Cooper-pair ready
form: if the state (k, ↑) is filled, then the state (−k, ↓) is
filled also.

With an insight that later proves to be valid, Schrief-
fer proposed the following form for the superconductor
ground state (see App. A),

|ΨG〉 =
∏

k=k1,k2,··· ,kM

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉, (21)
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where uk and vk are complex numbers and

|uk|2 + |vk|2 = 1, for each k. (22)

Obviously, |vk|2 is the probability of the (k ↑,−k ↓)-state
to be occupied (not necessarily bounded), while |uk|2 is
the probability of this state to be un-occupied.

What’s special about this BCS state is that it is a
direct product of Cooper pair states, and every Cooper
pair state has the same form. Also, the particle number
in this state is not fixed, but ranges from 0 to 2M . This
is in sharp contrast to the state in Eq. (20), which has N
electrons. This feature turns out to be essential for the
superconducting order parameter ∆k to be non-zero.

The average number of electrons in the BCS can be
calculated from

N̄ = 〈ΨG|
∑
ks

c†kscks|ΨG〉 (23)

= 2
∑

k

〈ΨG|c†k↑ck↑|ΨG〉.

Out of the many products in the BCS state, only the one
with momentum k has non-trivial expectation value,

〈0| (u∗k + v∗kc−k↓ck↑) c
†
k↑ck↑

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉 = |vk|2.

(24)
Therefore,

N̄ = 2
∑

k

|vk|2, (25)

which is of the order of 1023.
The fluctuation of the particle number δN2 is

〈N̂2〉 − N̄2 (26)

= 2
∑
k1k2

〈ΨG|c†k1↑ck1↑c
†
k2↑ck2↑|ΨG〉

+ 2
∑
k1k2

〈ΨG|c†k1↑ck1↑c
†
k2↓ck2↓|ΨG〉 − 4

∑
k1k2

|vk1 |2|vk2 |2

= 4
∑
k1

|vk1 |2 + 4
∑

k1 6=k2

|vk1 |2|vk2 |2 − 4
∑
k1k2

|vk1 |2|vk2 |2

= 4
∑

k

|uk|2|vk|2.

In next section, we will see that |vk|2 drops from 1 to
0 near the Fermi energy, with a transition width of the
order of kBTc. On the other hand, |uk|2 = 1 − |vk|2
increases from 0 to 1 near the Fermi energy (see Fig. 1).
So their product |uk|2|vk|2 is nonzero around the Fermi
energy within a range kBTc. Therefore,

δN2 ∼ Tc

TF
N̄ , (27)

and

δN

N
∼
(
Tc

TF

)1/2 1√
N̄
∼ 10−13. (28)

The fluctuation is quite small for a macroscopic system,
but could be significant in a mesoscopic system.

The number of electrons that can bind with each other
are those near the Fermi surface. Their number is of
the order of NC/N̄ ∼ Tc/TF ∼ 10−4. These Cooper
pairs lower the energy of the whole system by an amount
∼ NCkBTc. This is a tiny fraction of the total energy,

NCTc

N̄TF
∼ 10−8. (29)

It’s impossible for a theorist to account for all of the
dynamical details up to such a fine scale (In Chap 2,
we have seen how far off one can get in calculating the
energy of an electronic system). Therefore, a successful
theory must pick up a mechanism that is most crucial for
this slight change of energy, while ignoring those that are
irrelevant (but could involve much larger energy scales).

IV. BCS PAIRING HAMILTONIAN

The general Hamiltonian for interacting electrons is

H =
∑
k,s

ε0kc
†
k,sck,s (30)

+
1

2V0

∑
ks,k′s′,q

V eff
q c†k+q,sc

†
k′−q,s′ck′s′cks.

We have included the phonon effect in the effective inter-
action (see. Eq. (7)) The interaction term describes two
electrons in states (k,k′) being scattered to (k+q,k′−q).
We now relabel the momenta and consider two electrons
in states (k,−k+q) being scattered to (k′,−k′+q). The
interaction term can be decomposed as

1
2V0

∑
ks,k′s′,q

V eff
kk′ c

†
k′sc

†
−k′+q,s′c−k+q,s′cks (31)

=
1
V0

∑
kk′

V eff
kk′ c

†
k′↑c

†
−k′↓c−k↓ck↑ ← singlet pairs

+
1
V0

∑
kk′

V eff
kk′ c

†
k′↑c

†
−k′↑c−k↑ck↑ ← triplet pairs

+
1

2V0

∑
ks,k′s′,q 6=0

V eff
kk′ c

†
k′sc

†
−k′+q,s′c−k+q,s′cks.

If each of the momenta k,k′ has N possible values,
then there are N2 singlet-pair terms (the same for the
triplet-pair terms). For the summation with q 6= 0, there
are about N3 − N2 terms. Even though much larger
in number, they are random in signs when sandwiched
between the BCS state and would cancel with each other.
On the contrary, each of the singlet-pair term is negative,
so they make coherent contributions: −Ve

V0
N2 (Ref. 2,

p.313). The triplet-pair terms are crucial in the p-wave
superconductors, but not in the s-wave superconductors.
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Therefore, we would only keep the singlet-pair terms, and
ignore the rest of the terms:

HBCS =
∑
k,s

ε0kc
†
k,sck,s +

1
V0

∑
kk′

Vkk′c
†
k′↑c

†
−k′↓c−k↓ck↑,

(32)
where Vkk′ = −Ve if the magnitude of both εk ≡ ε0k − εF

and εk′ ≡ ε0k′ − εF are smaller than a cutoff energy ~ωc.
Even though we only keep the singlet-pair terms, the

neglected interactions are required for things like collec-
tive plasma mode, excitation states within SC energy
gap, and damping effect (Ref. 3, p.27).

A. Determination of uk and vk

The BCS wave function is essentially a variational wave
function, and uk and vk are its parameters. They can be
determined by the method of variation,

δ〈ΨG|HBCS − µN̂ |ΨG〉 = 0. (33)

A Lagrange multiplier (the chemical potential) has been
added to fix the total number of particles. First we need
to evaluate the expectation values, which involve terms
like (see Eq. (24))

〈ΨG|c†k↑ck↑|ΨG〉 = |vk|2. (34)

It is left as an exercise to show that

〈ΨG|c†k′↑c
†
−k′↓c−k↓ck↑|ΨG〉 = uk′v

∗
k′u

∗
kvk. (35)

This is the probability amplitude for electrons scattering
from states (k,−k) to states (k′,−k′).

Later we will show that if uk are taken as real num-
bers, then vk would be a real number multiplied by a k-
independent phase shift eiφ (φ is the phase of the macro-
scopic condensate). Therefore,

〈ΨG|HBCS−µN̂ |ΨG〉 = 2
∑

k

εk|vk|2+
1
V0

∑
kk′

Vkk′uk′ |vk′ |uk|vk|,

(36)
where εk ≡ ε0k − µ.

Since |uk|2 + |vk|2 = 1, they can be parameterized as

uk = cos θk, vk = sin θke
iφ. (37)

Then,

〈· · · 〉 =
∑

k

εk(1− cos 2θk) +
1

4V0

∑
kk′

Vkk′ sin 2θk′ sin 2θk.

(38)
Minimize the expectation value with respect to the pa-
rameters, ∂〈· · · 〉/∂θk = 0, one will get

tan 2θk = −
1
V0

∑
k′ Vkk′ sin 2θk′

2εk
. (39)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.7  0.75  0.8  0.85  0.9  0.95  1  1.05  1.1

u^
2,

v^
2

Energy

FIG. 1 The functions |uk|2 (solid line), |vk|2 (dotted line),
and |uk|2|vk|2. The energy is in units of the Fermi energy,
and ∆/εF = 0.01.

Before solving this equation, let’s introduce the super-
conductor gap function,

∆k ≡ −
1
V0

∑
k′

Vkk′〈c−k′↓ck′↑〉 (40)

= − 1
V0

∑
k′

Vkk′uk′vk′ = − 1
2V0

∑
k′

Vkk′ sin 2θk′e
iφ.

Notice that ∆k has the same phase eiφ as vk’s. From
Eq. (39), one has

tan 2θk =
|∆k|
εk

, (41)

which leads to

sin 2θk(= 2uk|vk|) =
|∆k|
Ek

, (42)

cos 2θk(= u2
k − |vk|2) = +

εk

Ek
,

where Ek ≡
√
ε2k + |∆k|2.

The positive sign of cos 2θk is chosen so that |vk|2 → +1
as εk � 0.

From Eq. (40), we then have the self-consistent gap
equation,

∆k = − 1
2V0

∑
k′

Vkk′
∆k′

Ek′
. (43)

Since the interaction potential Vkk′ is a constant −Ve

when both electrons are near the Fermi surface, the gap
function would be k-independent, |∆k| = ∆. Then from
Eq. (43), we have

1 =
Ve

2V0

∑
k

1√
ε2k + ∆2

= VeD(εF )
1
2

∫ ~ωc

−~ωc

dε

ε2 + ∆2︸ ︷︷ ︸
log(ε+

√
ε2+∆2)|~ωc

0

.

(44)
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It is not difficult to show that

∆ =
~ωc

sinh
(

1
D(εF )Ve

) D(εF )Ve�1∼ 2~ωce
−1/D(εF )Ve . (45)

In realistic cases, we have D(εF )Ve ≤ 0.3, and the ap-
proximation is accurate to within 1% (compare with
Eq. (15)).

Finally, the values of uk and |vk| are given by

u2
k =

1
2

(
1 +

εk

Ek

)
(46)

|vk|2 =
1
2

(
1− εk

Ek

)
.

The distribution of |vk|2 is plotted in Fig. 1. It is the
probability of the states (k,−k) being occupied.

V. EXCITATIONS IN SUPERCONDUCTOR

A. Mean-field theory of superconductor

We now rely on the BCS Hamiltonian to study various
properties of a superconductor. Cooper pairs are the
main players of superconductivity, and the interactions
between them is less crucial. Therefore, we will use the
following mean-field approximation (with hindsight, such
an approximation proves to be very successful),

c†k′↑c
†
−k′↓c−k↓ck↑ (47)

' c†k′↑c
†
−k′↓〈c−k↓ck↑〉+ 〈c†k′↑c

†
−k′↓〉c−k↓ck↑

− 〈c†k′↑c
†
−k′↓〉〈c−k↓ck↑〉.

Notice that this is not the usual MFA introduced in
Chap 2, since two creation (or annihilation) operators
are grouped together here.

The BCS mean-field Hamiltonian can then be written
as,

HBCS =
∑
ks

εkc
†
kscks −

∑
k

∆kc
†
k↑c

†
−k↓ −

∑
k

∆∗
kc−k↓ck↑(48)

−
∑
kk′

Vkk′〈c†k′↑c
†
−k′↓〉〈c−k↓ck↑〉.

B. Bogoliubov-Valatin transformation

The quadratic Hamiltonian in Eq. (48) can be diago-
nalized as follows. First, rewrite the first term of HBCS

as, ∑
k

εk

(
c†k↑ck↑ − c

†
k↓ck↓

)
+
∑

k

εk, (49)

then the Hamiltonian can be written in a matrix form,

HBCS =
∑

k

(c†k↑c−k↓)
(

εk −∆k

−∆∗
k −εk

)(
ck↑
c†−k↓

)
+A, (50)

where

A =
∑

k

εk −
∑
kk′

Vkk′〈c†k′↑c
†
−k′↓〉〈c−k↓ck↑〉. (51)

The 2× 2 matrix can be diagonalized with a similarity
transformation (the Bogoliubov-Valatin transforma-
tion), (

εk −∆k

−∆∗
k −εk

)
= U

(
Ek 0
0 −Ek

)
U†, (52)

U =
(
α1 α2

β1 β2

)
,

where ±Ek = ±
√
ε2k + |∆k|2 are the eigenvalues, and

(α1/2, β1/2)T are the eigen-vectors of the first/second
eigenvalues.

It can be shown that

|α1|2 =
1
2

(
1 +

εk

Ek

)
︸ ︷︷ ︸

|uk|2

= |β2|2, (53)

|β1|2 =
1
2

(
1− εk

Ek

)
︸ ︷︷ ︸

|vk|2

= |α2|2.

There is some freedom in choosing the phases of α1/2 and
β1/2. Again we assume that uk are all real, then choose

U =
(
uk vk

−v∗k uk

)
. (54)

As a result,

HBCS =
∑

k

(γ†k↑γ−k↓)
(
Ek 0
0 −Ek

)(
γk↑
γ†−k↓

)
+A (55)

=
∑

k

Ek

(
γ†k↑γk↑ + γ†−k↓γ−k↓

)
−
∑

k

Ek +A︸ ︷︷ ︸
≡ES

G

.

The rotated operators are defined as(
γk↑
γ†−k↓

)
=
(
uk −vk

v∗k uk

)(
ck↑
c†−k↓

)
, (56)

or
(
ck↑
c†−k↓

)
=
(
uk vk

−v∗k uk

)(
γk↑
γ†−k↓

)
.

Two remarks are in order:
First, the quasi-particles created by γ†ks in Eq. (55) do

not interact with each other. So HBCS is a Hamiltonian
of free (quasi-)particles. The terms in the parenthesis of
Eq. (55) are the number operators of the quasi-particles.
Therefore, the lowest energy of the BCS Hamiltonian is
ES

G (when there is no quasi-particle). The first excited
state has 1 quasi-particle, with an excitation energy Ek.
We will call the quasi-particle as a bogolon. Notice that
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it has a definite energy, momentum, and spin, but does
not have a definite charge.

Second, it can be shown that

{γks, γ
†
k′s′} = δkk′δss′ . (57)

That is, the bogolons are fermions.

C. Condensation energy

Before the superconducting transition, the normal
state has energy

EN
G = 2

∑
k<kF

εk. (58)

After the transition, the superconduting state has energy
(see Eqs. (51) and (55))

ES
G =

∑
k

(
εk − Ek + ∆k〈c†k↑c

†
−k↓〉

)
. (59)

Their difference, δEG = ES
G−EN

G , is called the conden-
sation energy. You can check that the normal state
energy EN

G can be obtained from the SC state energy ES
G

with ∆k = 0.
Recall that the Cooper pair amplitude is

〈c†k↑c
†
−k↓〉 =

1
2

sin 2θke
−iφ =

1
2

∆∗
k

Ek
. (60)

It is nonzero only within a thin shell near the Fermi sur-
face. Let |∆k| = ∆ within that shell, then

ES
G =

∑
k

(
εk −

ε2k
Ek

)
− ∆2

Ve
V0, (61)

where we have used Ve

2V0

∑
k

1
Ek

= 1 (see Eq. (43) and
below).

After some more calculations, one can show that
(Ref. 4, p.57)

δEG = −1
2
D(εF )∆2V0. (62)

According to an independent thermodynamic analysis,
this energy should be equal to H2

c /8π, where Hc is the
critical magnetic field (at T = 0).

D. Density of states

Since the electron operator cks is connected with the
bogolon operator γks with an unitary transformation, one
expects

DN (ε)dε = DS(E)dE. (63)

 0

 1

 2

 3

 4

 5

 6

 7

-0.04 -0.02  0  0.02  0.04

D
O

S

Energy

FIG. 2 The density of states (in units of DN (εF )) near the
Fermi energy. The energy is in units of εF and ∆ = 0.01.

This leads to the following density of states near the
Fermi energy,

DS(E) = DN (ε)
dε

dE
(64)

=

{
DN (εF ) E√

E2−∆2 if E > ∆

0 if E < ∆.

In Fig. 2, one can see that the SC transition opens a gap
with a magnitude ∆ around the Fermi energy. This is
the result of the Cooper instability mentioned earlier in
Sec. II.

E. Excited states of the BCS mean-field Hamiltonian

The SC ground state can be defined as the vacuum of
bogolons,

γk↑|ΨG〉 = γ−k↓|ΨG〉 = 0. (65)

This definition is consistent with the BCS ground state
|ΨG〉 in Eq. (21). For example, one can check that,

γk↑|ΨG〉 =
(
ukck↑ − vkc

†
−k↓

)∏
k′

(
uk′ + vk′c

†
k′↑c

†
−k′↓

)
|0〉(66)

= 0.

This explains why we write the eigen-vectors in Eq. (54)
with those specific forms.

The excited states with one bogolon are

γ†k↑|ΨG〉 = c†k↑

∏
k′ 6=k

(
uk′ + vk′c

†
k′↑c

†
−k′↓

)
|0〉, (67)

γ†−k↓|ΨG〉 = c†−k↓

∏
k′ 6=k

(
uk′ + vk′c

†
k′↑c

†
−k′↓

)
|0〉.
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As we have shown earlier (see Eq. (34)), the number
of electrons in state-k of the BCS ground state is

〈ΨG|
∑

s

c†kscks|ΨG〉 = 2|vk|2 (68)

= 2 → 0 as energy increases.

On the other hand, the number of electrons in state-k of
the 1-bogolon state is

〈ΨG|γk↑
∑
s′

c†ks′cks′γ
†
k↑|ΨG〉 = 1. (69)

Compared to the ground state, the 1-bogolon state has
one less electron below the Fermi energy, but one more
electron above the Fermi energy. Therefore, the excited
state moves one electron from below the Fermi energy to
above.

Finally, if one fills the vacuum with bogolons, then it
can be shown that∏

k

γ−k↓γk↑|0〉 =
∏
k

(−vk)
(
uk + vkc

†
k↑c

†
−k↓

)
|0〉, (70)

which is nothing but |ΨG〉 after suitable normalization.

F. Thermal excitations

Once the BCS states are described in terms of the non-
interacting bogolons, the quasiparticle excitations can be
studied easily. For example, we can study the tempera-
ture effect on the gap function,

∆k = −
∑
k′

Vkk′〈c−k′↓ck′↑〉.

First, write the electron operators in terms of bogolon
operators (see Eq. (56)),

ck↑ = ukγk↑ + vkγ
†
−k↓ (72)

c−k↓ = −vkγ
†
k↑ + ukγ−k↓.

Then,

〈c−k↓ck↑〉 = −ukvk〈γ†k↑γk↑ + γ†−k↓γ−k↓ − 1〉. (73)

Terms like 〈ΨG|γ†k↑γ
†
−k↓|ΨG〉 are zero. This is true also

for n-bogolon excited states as well, where n is any posi-
tive integer. Therefore, the thermal average 〈γ†k↑γ

†
−k↓〉 =

0.
As mentioned earlier, the bogolons are free fermions.

Therefore (same for the (−k ↓) bogolon),

〈γ†k↑γk↑〉 = f(Ek) =
1

eEk/kBT + 1
. (74)

This is a Fermi distribution with zero chemical potential.
The average bogolon number reduces to zero as T → 0.

The gap function now becomes

∆k = − 1
V0

∑
k′

Vkk′uk′vk′ [1− 2f(Ek′)] . (75)

Use Eq. (60), and let ∆k = ∆eiφ, Vkk′ = −Ve as before,
then we have the gap equation at finite temperature,

1 =
Ve

2V0

∑
k∈shell

1
Ek

tanh
Ek

2kBT
. (76)

This is a generalization of Eq. (44).

G. Determine the critical temperature Tc

At critical temperature T = Tc, Ek = εk, so

1 = VeD(εF )
∫ ~ωc

0

dε
1
ε

tanh
ε

2kBTc
(77)

' VeD(εF ) ln
(

2eγ

π

~ωc

kBTc

)
,

where γ ' 0.557 is the Euler constant. This leads to (see
Eq. (45))

kBTc =
2eγ

π︸︷︷︸
'1.13

~ωce
−1/D(εF )Ve =

1.13
2

∆(0). (78)

That is,

2∆(0)
kBTc

' 3.53. (79)

This is the famous result predicted by the BCS theory.
Most of the conventional superconductors have this ratio
within the range of 3.0 ∼ 4.5. For example, the value
of tin is 3.46; the value of lead is 4.29. Superconductors
with this ratio larger than 4.5 are called strong-coupling
superconductors. Their explanation requires a modified
BCS theory (Eliashberg’s theory).

H. Temperature dependence of the superconducting gap
∆(T )

Let’s go back to the gap function at T < Tc,

1 = VeD(εF )
∫ ~ωc

0

dε
(tanh

√
ε2 + ∆2/2kBT )√
ε2 + ∆2

(80)

= VeD(εF )
∫ ~ωc

kBT

0

dx
tanh 1

2

[
x2 + (∆/kBT )2

]1/2

[x2 + (∆/kBT )2]1/2
.

At low temperature with ~ωc/kBTc � 1, the upper limit
of the integral can be extended to infinity. The integral
is then only a function of ∆(T )/kBT . Therefore,

∆(T )
∆(0)

= f

(
T

Tc

)
. (81)
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FIG. 3 Superconducting energy gap reduces to zero as the
temperature approached the critical temperature [the figure
is adopted from hyperphysics website].

The functional form of f is the same for different mate-
rials. Fig. 3 shows the temperature dependence of ∆(T )
calculated from the gap equation above. When T is near
Tc, it can be shown that

∆(T )
∆(0)

' 1.74
(

1− T

Tc

)1/2

. (82)

VI. MEISSNER EFFECT

A. London theory of the Meissner effect

London showed that, if the electric current density is
proportional to the vector potential (CGS),

Je(r) = − c

4πλ2
L

A(r), (83)

then from the Ampere equation∇×B = 4π
c Je, we should

get

∇2B− 1
λ2

L

B = 0. (84)

This implies the repulsion of magnetic field from a super-
conductor.

For example, in Fig. 4 there is a semi-infinite SC in the
region x > 0. Assume there is a uniform magnetic field
B0ẑ outside the SC and is parallel to the surface of the
SC, then from Eq. (84) and the boundary condition at
x = 0, we get (for x > 0)

B(x) = B0e
−x/λL . (85)

That is, the static magnetic field cannot penetrate deep
into the bulk of the SC. The parameter λL is called the
London penetration depth, which is of the order of
0.1 µm for type-I superconductor.

B0

FIG. 4 A uniform magnetic field cannot penetrate deep inside
a superconductor.

B. Microscopic theory of the London equation

To study the connection between external potential A
and electric current, one uses the Kubo formula in Chap
3:

〈Je
α(q, ω)〉 = χe

αβ(q, ω)Aβ(q, ω), (86)

where

χe
αβ(q, ω) = −e2

[
δαβ

ρ(q, ω)
m

+ χp
αβ(q, ω)

]
. (87)

The paramagnetic response function is

χp
αβ(q, ω) = − i

V0

∫ ∞

0

dteiωt〈[Jα(q, t), Jβ(−q, 0)]〉. (88)

In the following discussion, we will show that, at zero
temperature, a static A(r) = Aqe

iq·r at long wave length
(q → 0) would not generate a paramagnetic current.
Therefore, in this case the electric current in a SC is
entirely the diamagnetic current.

In Eq. (88), we have terms of the form (T = 0),

〈Jα(q, t)Jβ(−q, 0)− Jβ(−q, 0)Jα(q, t)〉G (89)

=
∑

l

〈ΨG|Jα(q)e−iElt|Ψl〉〈Ψl|Jβ(−q)|ΨG〉

−
∑

l

〈ΨG|Jβ(−q)|Ψl〉〈Ψl|eiEltJα(q)|ΨG〉,

where {|Ψl〉} form a complete set, and El is the eigenen-
ergy of state |Ψl〉 (the ground state energy is set to zero).
Recall that the current operator is

J(q) =
~
m

∑
ks

(
k +

q
2

)
c†ksck+q,s. (90)

It’s always easier to let the operators act on the ground
state, so we will use the dual relation,

〈ΨG|Jα(q) = [Jα(−q)|ΨG〉]† , (91)
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At the core of the calculation is

c†ksck−q,s|ΨG〉 (92)

=
(
ukγ

†
ks + v∗kγ−k−s

)(
uk−qγk−q,s + vk−qγ

†
−k+q,−s

)
|ΨG〉

= ukvk−q γ
†
ksγ

†
−k+q,−s|ΨG〉︸ ︷︷ ︸

an excited state |Ψl〉

+|vk|2δq,0|ΨG〉.

After some straightforward calculations, we have

〈ΨG|Jα(q, t)Jβ(−q, 0)|ΨG〉 (93)

=
2~2

m2

∑
ks

(
kα −

qα
2

)(
kβ −

qβ
2

)
×
(
u2

k|vk−q|2 − ukuk−qvkv
∗
k−q

)
e−i(Ek+Ek−q)t,

where Eq+Ek−q is the eigenenergy of the 2-bogolon state
in Eq. (92). For the other term in the commutator, one
just use the result in Eq. (93), but exchange α with β,
and q with −q,

〈ΨG|Jβ(−q, 0)Jα(q, t)|ΨG〉 (94)

=
2~2

m2

∑
ks

(
kα +

qα
2

)(
kβ +

qβ
2

)
×
(
u2

k|vk+q|2 − ukuk+qvkv
∗
k+q

)
ei(Ek+Ek+q)t.

Shift k to k− q, and combine with Eqs. (93), and carry
out the integration over time to get (ω = 0)

χp
αβ(q) = − ~2

m2

2
V0

∑
k

(
kα −

qα
2

)(
kβ −

qβ
2

)
(95)

× |uk−qvk − ukvk−q|2

Ek + Ek−q
.

The numerator (sometimes called the coherence fac-
tor) is (see Eq. (46))

|u′v ± uv′|2 (96)

=
1
4

(√
1 +

ε′

E′

√
1− ε

E
±
√

1 +
ε

E

√
1− ε′

E′

)2

=
1
2

(
1− εε′

EE′ ±
∆2

EE′

)
.

It is zero when q → 0. Therefore, the paramagnetic
response function χp

αβ(0) in Eq. (95) vanishes as a result.
Finally, we have

〈Je〉 = −e
2ρ

mc
A. (97)

This is the London equation. Compare with Eq. (83),
one gets

λL =
(
mc2

4πρe2

)1/2

=
c

ωp
, ωp =

√
4πρe2

m
. (98)

VII. FLUX QUANTIZATION THROUGH A
SUPERCONDUCTING RING

The magnetic flux Φ inside a SC ring must be quan-
tized. Such a quantization was first suggested by On-
sager. Here we follow the discussion in Byers and Yang’s
paper (Ref. 5). For electrons in a metal ring, the
Schrodinger equation is∑

i

1
2m

[
pi +

e

c
A(ri)

]2
Ψ + VΨ = EΨ, (99)

where A is the vector potential due to the magnetic
flux, and V could include electron-phonon and electron-
electron interactions.

Due to the Meissner effect, ∇ ×A = 0 inside the su-
perconductor. This implies

A(r) = ∇χ inside the SC, (100)

the scalar function χ is not single-valued since∮
A · d` = ∆χ = Φ. (101)

As a pure gauge, χ can be eliminated from the
Schrodinger equation by a gauge transformation,

Ψ → Ψ′ = Ψei
∑

i
e

~c χ(ri). (102)

Then,

piΨ′ = ei
∑

i
e

~c χ(ri)
(
pi +

e

c
∇iχ

)
Ψ. (103)

As a result, Eq. (99) becomes(∑
i

p2
i

2m

)
Ψ′ + VΨ′ = EΨ′. (104)

Even though not in the Schrodinger equation, A changed
the boundary condition of the wave function: Ψ′ now is
not single-valued. For example, after circling electron-p
around the ring once (the other electrons remain fixed),

Ψ′ → ei e
~c ΦΨ′. (105)

The extra factor is periodic in Φ with a period Φ0 = hc
e .

As a result, the eigenvalues En, and the partition func-
tion Z =

∑
n e

−βEn , are all periodic in Φ. Also, one
expects

En(−Φ) = En(Φ) → Z(−Φ) = Z(Φ). (106)

Therefore, ∂Z/∂Φ = 0 at Φ = 0 and Φ0/2.
The Aharonov-Bohm phase results in the following

shift of electron wavevector: kL→ kL+2πΦ/Φ0. There-
fore,

1
L

∂En

~∂k
= − c

e

∂En

∂Φ
, (107)
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F

Φ

Φ0Φ0/2

FIG. 5 The free energy of s SC ring is a periodic function of
the threading magnetic flux.

and the current circling the ring is

I = − e
L

∑
k

∂En

~∂k
e−βEn

Z
(108)

=
c

β

∂ lnZ
∂Φ

= c
∂F

∂Φ
,

where F is the free energy. It follows that I = 0 at Φ = 0
and Φ0/2. A schematic plot of the free energy is shown in
Fig. 5. One can see that the system is in stable equilib-
rium when Φ = `Φ0 (` is an integer), and the flux would
be quantized at these values. If the applied flux does not
satisfy this condition, then the current in Eq. (108) would
flow. The current won’t stop until the induced magnetic
flux plus the external flux equals a quantized value.

However, experiments found that the flux inside a SC
ring is quantized at Φ0/2, instead of Φ0. This is of course
due to the Cooper pair (which has charge 2e), but what’s
wrong with the very general argument above?

Let’s consider a thin ring with circumference L. The
coordinate inside the ring is denoted as x. Since the two
electrons of a Cooper pair are correlated, the condition

Ψ′(x1, · · · , xp + L, · · · ) = Ψ′(x1, · · · , xp, · · · ) (109)

can be relaxed to (p, q are paired)

Ψ′(x1, · · · , xp+L, · · · , xq+L, · · · ) = Ψ′(x1, · · · , xp, · · · , xq, · · · ).
(110)

This allows the possibility of

Ψ′(x1, · · · , xp + L, · · · ) = −Ψ′(x1, · · · , xp, · · · ). (111)

For example, consider the wave function of a Cooper
pair in a ring (see Eqs. (8) and (10)) ,

ψ =

(∑
l

gle
il(φ1−φ2)

)
eiM

φ1+φ2
2 , (112)

where l is the quantum number for the relative motion,
and M is the angular momentum of the c.m. motion. If
M = 2m is an even integer, then

ψ =
∑

l

gle
i(m+l)φ1ei(m−l)φ2 . (113)

If M = 2m+ 1, then

ψ =
∑

l

gle
i(m+ 1

2+l)φ1ei(m+ 1
2−l)φ2 . (114)

For the second case, a single-particle wave function
changes sign when φ1,2 → φ1,2 + 2π, but the wave func-
tion of the Cooper pair does not change sign. That is, a
change of flux by Φ0/2 is enough to bring the system back
to its initial state, so the free energy would be periodic
in half of the flux quantum (see Ref. 3, p.242).

A. Persistent in a normal metal ring

Consider a clean metal ring at low temperature (but
not superconducting), so that an electron would be able
to maintain its phase coherence after circling the ring
once. In reality the magnetic field can penetrate through
the metal and the pure gauge condition (Eq. (100)) is not
strictly valid. Nevertheless, the analysis above Eq. (108)
still applies approximately, so that the free energy is pe-
riodic in Φ0.

Since there is no Meissner effect to screen out the mag-
netic flux, the flux threading through the ring does not
have to be quantized. Therefore, in general ∂F/∂Φ 6= 0,
and according to Eq. (108) there is a current inside the
ring. This is called a persistent current since it per-
sists as long as the external flux is there. Such a non-
dissipative current has been verified by experiments in
1989.

APPENDIX A: Connection with coherent state

1. Boson coherent state

Firstly, a short review of boson coherent state:

|λ〉 = e−|λ|
2/2eλa† |0〉 (A1)

= e−|λ|
2/2

∞∑
n=0

λn

√
n!
|n〉.

It is an eigenstate of the annihilation operator,

a|λ〉 = λ|λ〉, and n̄ = 〈λ|n̂|λ〉 = |λ|2. (A2)

In general,

λ = |λ|eiθ =
√
n̄eiθ. (A3)

It’s not difficult to see from Eq. (A1) that

1
i

∂

∂θ
|λ〉 = n̂|λ〉. (A4)

Therefore n̂ ' 1
i

∂
∂θ , and just like the uncertainty relation,

we have

∆n∆θ ≥ 1
2
. (A5)
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That is, one cannot fix the values of n and θ simultane-
ously.

Note: The relation n̂ ' 1
i

∂
∂θ cannot be exact. If it is,

then

[n̂, θ̂] =
1
i
, (A6)

which leads to

(n− n′)〈n|θ̂|n′〉 =
1
i
δnn′ . (A7)

This leads to contradiction when n = n′. That is why
there can be no angle (or phase) operator in quantum
mechanics. However, for a system with large n, when
the fluctuation (uncertainty) is of little significance, the
angle operator can be used in an approximate manner.

2. BCS coherent state

If we consider the Cooper pair as a single entity and
define

b†k = c†k↑c
†
−k↓, (A8)

then

[bk, b
†
k′ ] = (1− n̂k↑ − n̂−k↓) δkk′ . (A9)

Therefore, the new entity is not exactly a boson with the

usual commutation relation. Also,
(
b†k

)2

= 0, so it still
has the fermion character.

How did Schrieffer arrive at the BCS wave function in
Eq. (21)? He pictured the BCS state as a coherent state
of Cooper pairs and wrote

|ΨBCS〉 = e
∑

k αkb†k |0〉 (A10)

=
∏
k

eαkb†k |0〉 due to Eq. (A9)

=
∏
k

(
1 + αkb

†
k

)
|0〉.

After suitable normalization, we then have the BCS state
in Eq. (21)

When expanded in states with n Cooper pairs, we have

|ΨBCS〉 =
M∑

n=0

ane
inφ|n〉. (A11)

This is sharply peaked around n̄. Similar to Eq. (A4),
one has

1
i

∂

∂φ
|ΨBCS〉 = n̂|ΨBCS〉. (A12)

Also,

〈ΨBCS(φ′)|ΨBCS(φ)〉 =
M∑

np=0

ein(φ−φ′)|an|2. (A13)

For a macroscopic system, due to the rapid oscillation of
ein̄(φ−φ′), this product drops rapidly to zero as soon as
φ 6= φ′.

APPENDIX B: Connection with spontaneous symmetry
breaking (SSB)

1. SSB in a ferromagnet (FM)

The following ferromagnetic Heisenberg Hamiltonian
is invariant under SO(3) rotations,

H = −
∑

<i,j>

Si · Sj . (B1)

However, its ground state is a ferromagnetic state,

|Ψ0〉 = | ↑↑↑ · · · ↑〉, (B2)

which only has SO(2) symmetry (around the magneti-
zation axis). So the symmetry of the ground state is
not the same as that of the Hamiltonian. This is called
Spontaneous Symmetry Breaking (SSB).

The manifold of the FM ground state is

SO(3)/SO(2) = S2, a sphere. (B3)

The magnetization m of a ground state points to a par-
ticular point on this sphere. It costs no energy to globally
rotate m around S2, so the excitation energy of a spin
wave approaches zero (gapless) at long wavelength limit.
This is a special case of the Goldstone theorem.

Goldstone theorem states that, if a continuous
symmetry (with a group manifold G) is broken (to
a smaller manifold H), then there will be gapless
excitations. These gapless excitations are called the
Nambu-Goldstone mode (NG mode). The number of
Nambu-Goldstone modes is equal to, or less than, dim
G − dim H (Nayak’s lecture note). For example (h is
an external magnetic field),

• FM: SO(3) → SO(2), # of NG mode = 1.

• AFM: SO(3) → SO(2), # of NG mode = 2.

• FM+h: SO(2) → SO(2), # of NG mode = 0.

2. SSB in a BCS state

The BCS Hamiltonian in Eq. (32) conserves charge,

[HBCS , N̂ ] = 0, (B4)

where N̂ =
∑

ks c
†
kscks, which is a generator of U(1) sym-

metry (see below). However, the BCS ground state does
not conserve charge,

〈ΨBCS |c†k↑c
†
−k↓|ΨBCS〉 6= 0. (B5)

So the U(1) symmetry is broken (to Z2, to be precise).
If |ΨBCS〉 has a global phase φ, i.e.,

|ΨBCS(φ)〉 =
∏
k

(
uk + |vk|eiφc†k↑c

†
−k↓

)
|0〉, (B6)
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then

eiχN̂ |ΨBCS(φ)〉 = |ΨBCS(φ+ 2χ)〉. (B7)

So eiχN̂ is the generator of a U(1) symmetry. The ro-
tated coherent state overlaps little with |ΨBCS(φ)〉 (See
App. A). A ground state picks up a particular phase φ0,
and slight deviation from this point costs no energy (gap-
less phase mode).

In reality, there is no gapless phase mode in a
superconductor. This NG mode would couple with a
massless photon field (U(1) gauge field), so that the
former disappears, and the latter becomes massive. This
is called the Anderson-Higgs mechanism. A massive
photon has three degrees of freedom, which is equal to
the original degrees of freedom (one from the NG mode,
two from the massless photon). Massive longitudinal
photons are plasmons (with an energy gap), and massive
transverse photons cause the Meissner effect. More
discussions on this topic can be found in Ref. 6.

Prob. 1 Calculate∑
k1k2

〈ΨG|c†k1↑ck1↑c
†
k2↑ck2↑|ΨG〉

and
∑
k1k2

〈ΨG|c†k1↑ck1↑c
†
k2↓ck2↓|ΨG〉,

where

|ΨG〉 =
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉.

Prob. 2 Show that

〈ΨG|c†k1↑c
†
−k1↓c−k2↓ck2↑|ΨG〉 = uk1v

∗
k1
u∗k2

vk2 .

References

[1] P.G. de Gennes, Superconductivity in metals and alloys,
W.A. Benjamin, New York 1966.

[2] L.P. Levy, Magnetism and superconductivity, Springer-
Verlag, 2000,

[3] J.R. Schrieffer, Theory of superconductivity, W.A. Ben-
jamin, New York 1964.

[4] M. Tinkham, Introduction to superconductivity, 2nd ed.,
McGraw-Hill 1996.

[5] N. Byers and C.N. Yang, Phys. Rev. Lett. 7, 46 (1961).
[6] M. Greiter, Ann. Phys. 319, 217 (2005).


