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I. SCREENING OF ELECTRON INTERACTION

In Chap 3, we have derived the static dielectric function at long wave length,

εe(q) = 1 +
k2

0

q2
, (1)

where k2
0 = 4πe2D(εF ) is the Thomas-Fermi wave vector, D(εF ) is the density of states at

the Fermi energy. As a result, the Coulomb interaction between electrons is modified as

V0(q) =
4πe2

q2
→ V (q) =

4πe2

εe(q)q2
=

4πe2

q2 + k2
0

. (2)

By Fourier transforming back to the real space, we have the modified interaction,

V (r) =

∫
d3q

(2π)3
eiq·rV (q) =

e2

r
e−k0r. (3)

This is a screened Coulomb interaction with a screening length 1/k0.

The electrons in a solid is also under the influence of positive ions. When one brings a

surplus electron to a location, it would not only repel the other electrons, but also attract

surrounding (mobile) ions. The screening of ions also contributes to the dielectric function.

If we approximate the ions as an ion gas, instead of a vibrating lattice, then the analysis in

Chap 3 can be applied directly. However, since the ions have a much larger mass M than

electron’s, they respond to the surplus electron slowly. It is therefore more appropriate to

employ the dielectric function at high frequency,

εi(ω) = 1−
Ω2

p

ω2
, (4)

where Ω2
p = 4πne2/M is the plasma frequency for the ion gas.

The total dielectric function felt by electrons is given as

ε(q, ω) = 1 +
k2

0

q2
−

Ω2
p

ω2
. (5)

A rigorous argument that leads to this result can be found in, e.g., Chap 26 of Ashcroft and

Mermin’s. We will not repeat the analysis here. This dielectric function can be written in

an alternative form,
1

ε(q, ω)
=

1

1 + k2
0/q

2
· ω2

ω2 − ω(q)2
, (6)

where ω(q)2 = Ω2
p/εe(q) is the screened ionic plasma frequency, which is of the order of the

Debye frequency ωD.
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After including the contribution from mobile ions (or, phonons), the effective Coulomb

interaction is

Veff (q, ω) =
4πe2

ε(q, ω)q2
=

4πe2

q2 + k2
0

[
1 +

ω2(q)

ω2 − ω2(q)

]
. (7)

This can be regarded as an effective interaction between two electrons: q = k′ − k is the

difference of their momenta, and ~ω = |εk′ − εk| is the difference of their energies. Such a

statement can be justified rigorously using the manybody formulation of electron-phonon

interactions (see, e.g., Chap 17 of Bruus and Flensberg’s).

Because of the frequency dependent correction within the square bracket in Eq. (7), the

value of the interaction can be negative, when ω < ω(q). This means that, instead of

repulsion, the two electrons could attract each other, when their energy difference is less

than ω(q). This is called over screening, and is crucial to the formation of Cooper pairs.

II. COOPER PAIR

For two electrons residing deep inside a Fermi sphere, the over screening cannot take

effect, since the two electrons have nowhere to go. Only electrons near the Fermi surface

can stretch their legs and attract each other. Cooper showed that such an attraction leads

to a bound state, no matter how weak the attraction is. His argument is as follows.

Consider two electrons with the following wave function,

Ψ(r1, r2) = ψ(ρ)eiq·R, (8)

in which ρ = r1−r2 is the relative coordinate, and R is the center-of-mass (c.m.) coordinate

of two electrons. Since the electrons are close to the Fermi surface, according to the Fermi

liquid theory, they are nearly free. Therefore, the c.m. state can be considered as a plane

wave. Also, we consider only the state with q = 0, which has the lowest c.m. energy.

The paired state satisfies the Schrodinger equation,(
p2

1

2m
+

p2
2

2m
+

1

V0

∑
k

V (k)eik·(r1−r2)

)
Ψ(r1, r2) = EΨ(r1, r2). (9)

Expand the paired state as,

Ψ(r1, r2) =
∑

k

gke
ik·(r1−r2), (10)
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and substitute it to the Schrodinger equation, one can get

2
~2k2

2m︸ ︷︷ ︸
ε0
k

gk +
1

V0

∑
k′

V (k− k′)gk′ = Egk. (11)

The interaction between electrons is assumed to have the simplified form,

V (k− k′) =


−Ve if 0 < ε0

k − εF and ε0
k′ − εF < ~ωc

0 otherwise,

(12)

where ~ωc is a cut-off energy of the order of the Debye energy ~ωD. As a result, Eq. (11)

becomes (
E − 2ε0

k

)
gk = −Ve

V0

∑
k′∈ shell

gk′ . (13)

One can divide both sides of the equation by E − 2ε0
k, then sum over gk to get

1 = −Ve

V0

∑
k∈ shell

1

E − 2ε0
k

(14)

' −VeD(εF )

∫ εF +~ωc

εF

dε
1

E − 2ε

=
Ve

2
D(εF ) ln

(
E − 2εF − 2~ωc

E − 2εF

)
,

in which D(εF ) is the density of states at Fermi energy, and we have chosen an energy shell

with thickness ~ωD near the surface.

In most conventional superconductors, VeD(εF ) < 0.3. One assumes VeD(εF )� 1 (weak-

coupling approximation) and gets

E ' 2εF − 2~ωce
−2/VeD(εF ). (15)

The second term is the binding energy of the two electrons near the Fermi surface. Notice

that the binding energy is not analytic at Ve = 0. That is, one would fail to get this result

with a theory that treats Ve as a perturbation parameter.

The eigen-states depend on gk, which is

gk =
C

E − 2ε0
k

, where C = −Ve

V0

∑
k′

gk′ . (16)

Since this function depends on |k|, it is isotropic in k-space. Therefore, the corresponding

wave function in r-space (see Eq. (8) with q = 0) is also isotropic. In order for the Fermion
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wave function to change sign under an exchange of particles, the spin part needs to be a

singlet (antisymmetric).

Two remarks are in order: First, the size of the Cooper pair can be calculated via

ρ2
C =

∫
d3ρ|ψ(ρ)|2ρ2. (17)

This gives ρC = 2√
3

~vF

E
, where E is of the order of kBTc (see Ref. 1). Here we give an estimate

based on the uncertainty relation,

∆x ∼ ~
∆p
∼ ~

∆E/vF

, (18)

where ∆E ∼ kBTc. Therefore,

∆x ∼ ~vF

kBTc

∼ 1 µm. (19)

This is the coherence length of the superconductor.

The fraction of electrons condensed by the superconducting (SC) transition is about

Tc/TF ∼ 10−4. Therefore, the average spacing between condensed electrons is about

10−2 µm. Within a Cooper pair radius (1 µm), there are about 1/(10−2)3 ∼ 106 Cooper

pairs. So the Cooper pairs are very loosely bounded and mix with each other to form a

complex (but ordered) web.

Second, if V (k − k′) varies strongly with the angle ∠(k,k′), then there may be several

bound states. They are anisotropic states with more complicated spin dependence (Ref. 1,

p.96).

III. BCS WAVE FUNCTION

BCS theory is different from most of the theoretical investigations in condensed matter

physics. It does not solve the wave function from a manybody Hamiltonian, which is an

extremely difficult task. Instead, one writes down the wave function directly, then check to

see if it fits with the superconductivity in reality.

Let’s consider a partially filled energy band with N electrons and M k-states (2M > N).

A superconductor ground state of these N electrons is likely to be

|ΨN〉 =
∑
{k}

g(k1, k2, · · · , kN/2)c
†
k1↑c

†
−k1↓ · · · c

†
kN/2↑c

†
−kN/2↓|0〉. (20)
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We have written the operators in a Cooper-pair ready form: if the state (k, ↑) is filled, then

the state (−k, ↓) is filled also.

With an insight that later proves to be valid, Schrieffer proposed the following form for

the superconductor ground state (see App. A),

|ΨG〉 =
∏

k=k1,k2,··· ,kM

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉, (21)

where uk and vk are complex numbers and

|uk|2 + |vk|2 = 1, for each k. (22)

Obviously, |vk|2 is the probability of the (k ↑,−k ↓)-state to be occupied (not necessarily

bounded), while |uk|2 is the probability of this state to be un-occupied.

What’s special about this BCS state is that it is a direct product of Cooper pair states,

and every Cooper pair state has the same form. Also, the particle number in this state is not

fixed, but ranges from 0 to 2M . This is in sharp contrast to the state in Eq. (20), which has

N electrons. This feature turns out to be essential for the superconducting order parameter

∆k to be non-zero.

The average number of electrons in the BCS can be calculated from

N̄ = 〈ΨG|
∑
ks

c†kscks|ΨG〉 (23)

= 2
∑

k

〈ΨG|c†k↑ck↑|ΨG〉.

Out of the many products in the BCS state, only the one with momentum k has non-trivial

expectation value,

〈0| (u∗k + v∗kc−k↓ck↑) c
†
k↑ck↑

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉 = |vk|2. (24)

Therefore,

N̄ = 2
∑

k

|vk|2, (25)

which is of the order of 1023.
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The fluctuation of the particle number δN2 is

〈N̂2〉 − N̄2 (26)

= 2
∑
k1k2

〈ΨG|c†k1↑ck1↑c
†
k2↑ck2↑|ΨG〉

+ 2
∑
k1k2

〈ΨG|c†k1↑ck1↑c
†
k2↓ck2↓|ΨG〉 − 4

∑
k1k2

|vk1|2|vk2|2

= 4
∑
k1

|vk1|2 + 4
∑

k1 6=k2

|vk1|2|vk2|2 − 4
∑
k1k2

|vk1 |2|vk2 |2

= 4
∑

k

|uk|2|vk|2.

In next section, we will see that |vk|2 drops from 1 to 0 near the Fermi energy, with a

transition width of the order of kBTc. On the other hand, |uk|2 = 1 − |vk|2 increases from

0 to 1 near the Fermi energy (see Fig. 1). So their product |uk|2|vk|2 is nonzero around the

Fermi energy within a range kBTc. Therefore,

δN2 ∼ Tc

TF

N̄ , (27)

and
δN

N
∼
(
Tc

TF

)1/2
1√
N̄
∼ 10−13. (28)

The fluctuation is quite small for a macroscopic system, but could be significant in a meso-

scopic system.

The number of electrons that can bind with each other are those near the Fermi surface.

Their number is of the order of NC/N̄ ∼ Tc/TF ∼ 10−4. These Cooper pairs lower the

energy of the whole system by an amount ∼ NCkBTc. This is a tiny fraction of the total

energy,
NCTc

N̄TF

∼ 10−8. (29)

It’s impossible for a theorist to account for all of the dynamical details up to such a fine scale

(In Chap 2, we have seen how far off one can get in calculating the energy of an electronic

system). Therefore, a successful theory must pick up a mechanism that is most crucial for

this slight change of energy, while ignoring those that are irrelevant (but could involve much

larger energy scales).
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IV. BCS PAIRING HAMILTONIAN

The general Hamiltonian for interacting electrons is

H =
∑
k,s

ε0
kc

†
k,sck,s (30)

+
1

2V0

∑
ks,k′s′,q

V eff
q c†k+q,sc

†
k′−q,s′ck′s′cks.

We have included the phonon effect in the effective interaction (see. Eq. (7)) The interaction

term describes two electrons in states (k,k′) being scattered to (k + q,k′ − q). We now

relabel the momenta and consider two electrons in states (k,−k + q) being scattered to

(k′,−k′ + q). The interaction term can be decomposed as

1

2V0

∑
ks,k′s′,q

V eff
kk′ c

†
k′sc

†
−k′+q,s′c−k+q,s′cks (31)

=
1

V0

∑
kk′

V eff
kk′ c

†
k′↑c

†
−k′↓c−k↓ck↑ ← singlet pairs

+
1

V0

∑
kk′

V eff
kk′ c

†
k′↑c

†
−k′↑c−k↑ck↑ ← triplet pairs

+
1

2V0

∑
ks,k′s′,q 6=0

V eff
kk′ c

†
k′sc

†
−k′+q,s′c−k+q,s′cks.

If each of the momenta k,k′ has N possible values, then there are N2 singlet-pair terms

(the same for the triplet-pair terms). For the summation with q 6= 0, there are about

N3 − N2 terms. Even though much larger in number, they are random in signs when

sandwiched between the BCS state and would cancel with each other. On the contrary, each

of the singlet-pair term is negative, so they make coherent contributions: −Ve

V0
N2 (Ref. 2,

p.313). The triplet-pair terms are crucial in the p-wave superconductors, but not in the

s-wave superconductors. Therefore, we would only keep the singlet-pair terms, and ignore

the rest of the terms:

HBCS =
∑
k,s

ε0
kc

†
k,sck,s +

1

V0

∑
kk′

Vkk′c
†
k′↑c

†
−k′↓c−k↓ck↑, (32)

where Vkk′ = −Ve if the magnitude of both εk ≡ ε0
k − εF and εk′ ≡ ε0

k′ − εF are smaller than

a cutoff energy ~ωc.

Even though we only keep the singlet-pair terms, the neglected interactions are required

for things like collective plasma mode, excitation states within SC energy gap, and damping

effect (Ref. 3, p.27).
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A. Determination of uk and vk

The BCS wave function is essentially a variational wave function, and uk and vk are its

parameters. They can be determined by the method of variation,

δ〈ΨG|HBCS − µN̂ |ΨG〉 = 0. (33)

A Lagrange multiplier (the chemical potential) has been added to fix the total number of

particles. First we need to evaluate the expectation values, which involve terms like (see

Eq. (24))

〈ΨG|c†k↑ck↑|ΨG〉 = |vk|2. (34)

It is left as an exercise to show that

〈ΨG|c†k′↑c
†
−k′↓c−k↓ck↑|ΨG〉 = uk′v

∗
k′u

∗
kvk. (35)

This is the probability amplitude for electrons scattering from states (k,−k) to states

(k′,−k′).

Later we will show that if uk are taken as real numbers, then vk would be a real number

multiplied by a k-independent phase shift eiφ (φ is the phase of the macroscopic condensate).

Therefore,

〈ΨG|HBCS − µN̂ |ΨG〉 = 2
∑

k

εk|vk|2 +
1

V0

∑
kk′

Vkk′uk′|vk′|uk|vk|, (36)

where εk ≡ ε0
k − µ.

Since |uk|2 + |vk|2 = 1, they can be parameterized as

uk = cos θk, vk = sin θke
iφ. (37)

Then,

〈· · · 〉 =
∑

k

εk(1− cos 2θk) +
1

4V0

∑
kk′

Vkk′ sin 2θk′ sin 2θk. (38)

Minimize the expectation value with respect to the parameters, ∂〈· · · 〉/∂θk = 0, one will get

tan 2θk = −
1
V0

∑
k′ Vkk′ sin 2θk′

2εk

. (39)

Before solving this equation, let’s introduce the superconductor gap function,

∆k ≡ −
1

V0

∑
k′

Vkk′〈c−k′↓ck′↑〉 (40)

= − 1

V0

∑
k′

Vkk′uk′vk′ = − 1

2V0

∑
k′

Vkk′ sin 2θk′e
iφ.
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FIG. 1: The functions |uk|2 (solid line), |vk|2 (dotted line), and |uk|2|vk|2. The energy is in units

of the Fermi energy, and ∆/εF = 0.01.

Notice that ∆k has the same phase eiφ as vk’s. From Eq. (39), one has

tan 2θk =
|∆k|
εk

, (41)

which leads to

sin 2θk(= 2uk|vk|) =
|∆k|
Ek

, (42)

cos 2θk(= u2
k − |vk|2) = +

εk

Ek

,

where Ek ≡
√
ε2

k + |∆k|2.

The positive sign of cos 2θk is chosen so that |vk|2 → +1 as εk � 0.

From Eq. (40), we then have the self-consistent gap equation,

∆k = − 1

2V0

∑
k′

Vkk′
∆k′

Ek′
. (43)

Since the interaction potential Vkk′ is a constant −Ve when both electrons are near the Fermi

surface, the gap function would be k-independent, |∆k| = ∆. Then from Eq. (43), we have

1 =
Ve

2V0

∑
k

1√
ε2

k + ∆2
= VeD(εF )

1

2

∫ ~ωc

−~ωc

dε

ε2 + ∆2︸ ︷︷ ︸
log(ε+

√
ε2+∆2)|~ωc

0

. (44)

It is not difficult to show that

∆ =
~ωc

sinh
(

1
D(εF )Ve

) D(εF )Ve�1∼ 2~ωce
−1/D(εF )Ve . (45)
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In realistic cases, we have D(εF )Ve ≤ 0.3, and the approximation is accurate to within 1%

(compare with Eq. (15)).

Finally, the values of uk and |vk| are given by

u2
k =

1

2

(
1 +

εk

Ek

)
(46)

|vk|2 =
1

2

(
1− εk

Ek

)
.

The distribution of |vk|2 is plotted in Fig. 1. It is the probability of the states (k,−k) being

occupied.

V. EXCITATIONS IN SUPERCONDUCTOR

A. Mean-field theory of superconductor

We now rely on the BCS Hamiltonian to study various properties of a superconductor.

Cooper pairs are the main players of superconductivity, and the interactions between them is

less crucial. Therefore, we will use the following mean-field approximation (with hindsight,

such an approximation proves to be very successful),

c†k′↑c
†
−k′↓c−k↓ck↑ (47)

' c†k′↑c
†
−k′↓〈c−k↓ck↑〉+ 〈c†k′↑c

†
−k′↓〉c−k↓ck↑

− 〈c†k′↑c
†
−k′↓〉〈c−k↓ck↑〉.

Notice that this is not the usual MFA introduced in Chap 2, since two creation (or annihi-

lation) operators are grouped together here.

The BCS mean-field Hamiltonian can then be written as,

HBCS =
∑
ks

εkc
†
kscks −

∑
k

∆kc
†
k↑c

†
−k↓ −

∑
k

∆∗
kc−k↓ck↑ (48)

−
∑
kk′

Vkk′〈c†k′↑c
†
−k′↓〉〈c−k↓ck↑〉.
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B. Bogoliubov-Valatin transformation

The quadratic Hamiltonian in Eq. (48) can be diagonalized as follows. First, rewrite the

first term of HBCS as, ∑
k

εk

(
c†k↑ck↑ − c

†
k↓ck↓

)
+
∑

k

εk, (49)

then the Hamiltonian can be written in a matrix form,

HBCS =
∑

k

(c†k↑c−k↓)

 εk −∆k

−∆∗
k −εk

 ck↑

c†−k↓

+ A, (50)

where

A =
∑

k

εk −
∑
kk′

Vkk′〈c†k′↑c
†
−k′↓〉〈c−k↓ck↑〉. (51)

The 2×2 matrix can be diagonalized with a similarity transformation (the Bogoliubov-

Valatin transformation), εk −∆k

−∆∗
k −εk

 = U

Ek 0

0 −Ek

U †, (52)

U =

α1 α2

β1 β2

 ,

where ±Ek = ±
√
ε2

k + |∆k|2 are the eigenvalues, and (α1/2, β1/2)
T are the eigen-vectors of

the first/second eigenvalues.

It can be shown that

|α1|2 =
1

2

(
1 +

εk

Ek

)
︸ ︷︷ ︸

|uk|2

= |β2|2, (53)

|β1|2 =
1

2

(
1− εk

Ek

)
︸ ︷︷ ︸

|vk|2

= |α2|2.

There is some freedom in choosing the phases of α1/2 and β1/2. Again we assume that uk

are all real, then choose

U =

 uk vk

−v∗k uk

 . (54)
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As a result,

HBCS =
∑

k

(γ†k↑γ−k↓)

Ek 0

0 −Ek

 γk↑

γ†−k↓

+ A (55)

=
∑

k

Ek

(
γ†k↑γk↑ + γ†−k↓γ−k↓

)
−
∑

k

Ek + A︸ ︷︷ ︸
≡ES

G

.

The rotated operators are defined as γk↑

γ†−k↓

 =

uk −vk

v∗k uk

 ck↑

c†−k↓

 , (56)

or

 ck↑

c†−k↓

 =

 uk vk

−v∗k uk

 γk↑

γ†−k↓

 .

Two remarks are in order:

First, the quasi-particles created by γ†ks in Eq. (55) do not interact with each other. So

HBCS is a Hamiltonian of free (quasi-)particles. The terms in the parenthesis of Eq. (55)

are the number operators of the quasi-particles. Therefore, the lowest energy of the BCS

Hamiltonian is ES
G (when there is no quasi-particle). The first excited state has 1 quasi-

particle, with an excitation energy Ek. We will call the quasi-particle as a bogolon. Notice

that it has a definite energy, momentum, and spin, but does not have a definite charge.

Second, it can be shown that

{γks, γ
†
k′s′} = δkk′δss′ . (57)

That is, the bogolons are fermions.

C. Condensation energy

Before the superconducting transition, the normal state has energy

EN
G = 2

∑
k<kF

εk. (58)

After the transition, the superconduting state has energy (see Eqs. (51) and (55))

ES
G =

∑
k

(
εk − Ek + ∆k〈c†k↑c

†
−k↓〉

)
. (59)
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Their difference, δEG = ES
G−EN

G , is called the condensation energy. You can check that

the normal state energy EN
G can be obtained from the SC state energy ES

G with ∆k = 0.

Recall that the Cooper pair amplitude is

〈c†k↑c
†
−k↓〉 =

1

2
sin 2θke

−iφ =
1

2

∆∗
k

Ek

. (60)

It is nonzero only within a thin shell near the Fermi surface. Let |∆k| = ∆ within that shell,

then

ES
G =

∑
k

(
εk −

ε2
k

Ek

)
− ∆2

Ve

V0, (61)

where we have used Ve

2V0

∑
k

1
Ek

= 1 (see Eq. (43) and below).

After some more calculations, one can show that (Ref. 4, p.57)

δEG = −1

2
D(εF )∆2V0. (62)

According to an independent thermodynamic analysis, this energy should be equal toH2
c /8π,

where Hc is the critical magnetic field (at T = 0).

D. Density of states

Since the electron operator cks is connected with the bogolon operator γks with an unitary

transformation, one expects

DN(ε)dε = DS(E)dE. (63)

This leads to the following density of states near the Fermi energy,

DS(E) = DN(ε)
dε

dE
(64)

=


DN(εF ) E√

E2−∆2 if E > ∆

0 if E < ∆.

In Fig. 2, one can see that the SC transition opens a gap with a magnitude ∆ around the

Fermi energy. This is the result of the Cooper instability mentioned earlier in Sec. II.

E. Excited states of the BCS mean-field Hamiltonian

The SC ground state can be defined as the vacuum of bogolons,

γk↑|ΨG〉 = γ−k↓|ΨG〉 = 0. (65)
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FIG. 2: The density of states (in units of DN (εF )) near the Fermi energy. The energy is in units

of εF and ∆ = 0.01.

This definition is consistent with the BCS ground state |ΨG〉 in Eq. (21). For example, one

can check that,

γk↑|ΨG〉 =
(
ukck↑ − vkc

†
−k↓

)∏
k′

(
uk′ + vk′c

†
k′↑c

†
−k′↓

)
|0〉 (66)

= 0.

This explains why we write the eigen-vectors in Eq. (54) with those specific forms.

The excited states with one bogolon are

γ†k↑|ΨG〉 = c†k↑
∏
k′ 6=k

(
uk′ + vk′c

†
k′↑c

†
−k′↓

)
|0〉, (67)

γ†−k↓|ΨG〉 = c†−k↓

∏
k′ 6=k

(
uk′ + vk′c

†
k′↑c

†
−k′↓

)
|0〉.

As we have shown earlier (see Eq. (34)), the number of electrons in state-k of the BCS

ground state is

〈ΨG|
∑

s

c†kscks|ΨG〉 = 2|vk|2 (68)

= 2 → 0 as energy increases.

On the other hand, the number of electrons in state-k of the 1-bogolon state is

〈ΨG|γk↑
∑

s′

c†ks′cks′γ
†
k↑|ΨG〉 = 1. (69)
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Compared to the ground state, the 1-bogolon state has one less electron below the Fermi

energy, but one more electron above the Fermi energy. Therefore, the excited state moves

one electron from below the Fermi energy to above.

Finally, if one fills the vacuum with bogolons, then it can be shown that∏
k

γ−k↓γk↑|0〉 =
∏

k

(−vk)
(
uk + vkc

†
k↑c

†
−k↓

)
|0〉, (70)

which is nothing but |ΨG〉 after suitable normalization.

F. Thermal excitations

Once the BCS states are described in terms of the non-interacting bogolons, the quasi-

particle excitations can be studied easily. For example, we can study the temperature effect

on the gap function,

∆k = −
∑
k′

Vkk′〈c−k′↓ck′↑〉.

First, write the electron operators in terms of bogolon operators (see Eq. (56)),

ck↑ = ukγk↑ + vkγ
†
−k↓ (72)

c−k↓ = −vkγ
†
k↑ + ukγ−k↓.

Then,

〈c−k↓ck↑〉 = −ukvk〈γ†k↑γk↑ + γ†−k↓γ−k↓ − 1〉. (73)

Terms like 〈ΨG|γ†k↑γ
†
−k↓|ΨG〉 are zero. This is true also for n-bogolon excited states as well,

where n is any positive integer. Therefore, the thermal average 〈γ†k↑γ
†
−k↓〉 = 0.

As mentioned earlier, the bogolons are free fermions. Therefore (same for the (−k ↓)

bogolon),

〈γ†k↑γk↑〉 = f(Ek) =
1

eEk/kBT + 1
. (74)

This is a Fermi distribution with zero chemical potential. The average bogolon number

reduces to zero as T → 0.

The gap function now becomes

∆k = − 1

V0

∑
k′

Vkk′uk′vk′ [1− 2f(Ek′)] . (75)
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Use Eq. (60), and let ∆k = ∆eiφ, Vkk′ = −Ve as before, then we have the gap equation at

finite temperature,

1 =
Ve

2V0

∑
k∈shell

1

Ek

tanh
Ek

2kBT
. (76)

This is a generalization of Eq. (44).

G. Determine the critical temperature Tc

At critical temperature T = Tc, Ek = εk, so

1 = VeD(εF )

∫ ~ωc

0

dε
1

ε
tanh

ε

2kBTc

(77)

' VeD(εF ) ln

(
2eγ

π

~ωc

kBTc

)
,

where γ ' 0.557 is the Euler constant. This leads to (see Eq. (45))

kBTc =
2eγ

π︸︷︷︸
'1.13

~ωce
−1/D(εF )Ve =

1.13

2
∆(0). (78)

That is,
2∆(0)

kBTc

' 3.53. (79)

This is the famous result predicted by the BCS theory. Most of the conventional supercon-

ductors have this ratio within the range of 3.0 ∼ 4.5. For example, the value of tin is 3.46;

the value of lead is 4.29. Superconductors with this ratio larger than 4.5 are called strong-

coupling superconductors. Their explanation requires a modified BCS theory (Eliashberg’s

theory).

H. Temperature dependence of the superconducting gap ∆(T )

Let’s go back to the gap function at T < Tc,

1 = VeD(εF )

∫ ~ωc

0

dε
(tanh

√
ε2 + ∆2/2kBT )√
ε2 + ∆2

(80)

= VeD(εF )

∫ ~ωc
kBT

0

dx
tanh 1

2
[x2 + (∆/kBT )2]

1/2

[x2 + (∆/kBT )2]1/2
.
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FIG. 3: Superconducting energy gap reduces to zero as the temperature approached the critical

temperature [the figure is adopted from hyperphysics website].

At low temperature with ~ωc/kBTc � 1, the upper limit of the integral can be extended to

infinity. The integral is then only a function of ∆(T )/kBT . Therefore,

∆(T )

∆(0)
= f

(
T

Tc

)
. (81)

The functional form of f is the same for different materials. Fig. 3 shows the temperature

dependence of ∆(T ) calculated from the gap equation above. When T is near Tc, it can be

shown that
∆(T )

∆(0)
' 1.74

(
1− T

Tc

)1/2

. (82)

VI. MEISSNER EFFECT

A. London theory of the Meissner effect

London showed that, if the electric current density is proportional to the vector potential

(CGS),

Je(r) = − c

4πλ2
L

A(r), (83)

then from the Ampere equation ∇×B = 4π
c
Je, we should get

∇2B− 1

λ2
L

B = 0. (84)

This implies the repulsion of magnetic field from a superconductor.
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B0

FIG. 4: A uniform magnetic field cannot penetrate deep inside a superconductor.

For example, in Fig. 4 there is a semi-infinite SC in the region x > 0. Assume there is

a uniform magnetic field B0ẑ outside the SC and is parallel to the surface of the SC, then

from Eq. (84) and the boundary condition at x = 0, we get (for x > 0)

B(x) = B0e
−x/λL . (85)

That is, the static magnetic field cannot penetrate deep into the bulk of the SC. The pa-

rameter λL is called the London penetration depth, which is of the order of 0.1 µm for

type-I superconductor.

B. Microscopic theory of the London equation

To study the connection between external potential A and electric current, one uses the

Kubo formula in Chap 3:

〈Je
α(q, ω)〉 = χe

αβ(q, ω)Aβ(q, ω), (86)

where

χe
αβ(q, ω) = −e2

[
δαβ

ρ(q, ω)

m
+ χp

αβ(q, ω)

]
. (87)

The paramagnetic response function is

χp
αβ(q, ω) = − i

V0

∫ ∞

0

dteiωt〈[Jα(q, t), Jβ(−q, 0)]〉. (88)

In the following discussion, we will show that, at zero temperature, a static A(r) = Aqe
iq·r

at long wave length (q → 0) would not generate a paramagnetic current. Therefore, in this

case the electric current in a SC is entirely the diamagnetic current.
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In Eq. (88), we have terms of the form (T = 0),

〈Jα(q, t)Jβ(−q, 0)− Jβ(−q, 0)Jα(q, t)〉G (89)

=
∑

l

〈ΨG|Jα(q)e−iElt|Ψl〉〈Ψl|Jβ(−q)|ΨG〉

−
∑

l

〈ΨG|Jβ(−q)|Ψl〉〈Ψl|eiEltJα(q)|ΨG〉,

where {|Ψl〉} form a complete set, and El is the eigenenergy of state |Ψl〉 (the ground state

energy is set to zero). Recall that the current operator is

J(q) =
~
m

∑
ks

(
k +

q

2

)
c†ksck+q,s. (90)

It’s always easier to let the operators act on the ground state, so we will use the dual relation,

〈ΨG|Jα(q) = [Jα(−q)|ΨG〉]† , (91)

At the core of the calculation is

c†ksck−q,s|ΨG〉 (92)

=
(
ukγ

†
ks + v∗kγ−k−s

)(
uk−qγk−q,s + vk−qγ

†
−k+q,−s

)
|ΨG〉

= ukvk−q γ
†
ksγ

†
−k+q,−s|ΨG〉︸ ︷︷ ︸

an excited state |Ψl〉

+|vk|2δq,0|ΨG〉.

After some straightforward calculations, we have

〈ΨG|Jα(q, t)Jβ(−q, 0)|ΨG〉 (93)

=
2~2

m2

∑
ks

(
kα −

qα
2

)(
kβ −

qβ
2

)
×
(
u2

k|vk−q|2 − ukuk−qvkv
∗
k−q

)
e−i(Ek+Ek−q)t,

where Eq + Ek−q is the eigenenergy of the 2-bogolon state in Eq. (92). For the other term

in the commutator, one just use the result in Eq. (93), but exchange α with β, and q with

−q,

〈ΨG|Jβ(−q, 0)Jα(q, t)|ΨG〉 (94)

=
2~2

m2

∑
ks

(
kα +

qα
2

)(
kβ +

qβ
2

)
×
(
u2

k|vk+q|2 − ukuk+qvkv
∗
k+q

)
ei(Ek+Ek+q)t.
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Shift k to k−q, and combine with Eqs. (93), and carry out the integration over time to get

(ω = 0)

χp
αβ(q) = − ~2

m2

2

V0

∑
k

(
kα −

qα
2

)(
kβ −

qβ
2

)
(95)

× |uk−qvk − ukvk−q|2

Ek + Ek−q

.

The numerator (sometimes called the coherence factor) is (see Eq. (46))

|u′v ± uv′|2 (96)

=
1

4

(√
1 +

ε′

E ′

√
1− ε

E
±
√

1 +
ε

E

√
1− ε′

E ′

)2

=
1

2

(
1− εε′

EE ′ ±
∆2

EE ′

)
.

It is zero when q → 0. Therefore, the paramagnetic response function χp
αβ(0) in Eq. (95)

vanishes as a result.

Finally, we have

〈Je〉 = −e
2ρ

mc
A. (97)

This is the London equation. Compare with Eq. (83), one gets

λL =

(
mc2

4πρe2

)1/2

=
c

ωp

, ωp =

√
4πρe2

m
. (98)

VII. FLUX QUANTIZATION THROUGH A SUPERCONDUCTING RING

The magnetic flux Φ inside a SC ring must be quantized. Such a quantization was first

suggested by Onsager. Here we follow the discussion in Byers and Yang’s paper (Ref. 5).

For electrons in a metal ring, the Schrodinger equation is∑
i

1

2m

[
pi +

e

c
A(ri)

]2
Ψ + VΨ = EΨ, (99)

where A is the vector potential due to the magnetic flux, and V could include electron-

phonon and electron-electron interactions.

Due to the Meissner effect, ∇×A = 0 inside the superconductor. This implies

A(r) = ∇χ inside the SC, (100)
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the scalar function χ is not single-valued since∮
A · d` = ∆χ = Φ. (101)

As a pure gauge, χ can be eliminated from the Schrodinger equation by a gauge trans-

formation,

Ψ → Ψ′ = Ψei
∑

i
e

~c
χ(ri). (102)

Then,

piΨ
′ = ei

∑
i

e
~c

χ(ri)
(
pi +

e

c
∇iχ

)
Ψ. (103)

As a result, Eq. (99) becomes (∑
i

p2
i

2m

)
Ψ′ + VΨ′ = EΨ′. (104)

Even though not in the Schrodinger equation, A changed the boundary condition of the

wave function: Ψ′ now is not single-valued. For example, after circling electron-p around

the ring once (the other electrons remain fixed),

Ψ′ → ei e
~c

ΦΨ′. (105)

The extra factor is periodic in Φ with a period Φ0 = hc
e
.

As a result, the eigenvalues En, and the partition function Z =
∑

n e
−βEn , are all periodic

in Φ. Also, one expects

En(−Φ) = En(Φ) → Z(−Φ) = Z(Φ). (106)

Therefore, ∂Z/∂Φ = 0 at Φ = 0 and Φ0/2.

The Aharonov-Bohm phase results in the following shift of electron wavevector: kL →

kL+ 2πΦ/Φ0. Therefore,
1

L

∂En

~∂k
= −c

e

∂En

∂Φ
, (107)

and the current circling the ring is

I = − e
L

∑
k

∂En

~∂k
e−βEn

Z
(108)

=
c

β

∂ lnZ

∂Φ
= c

∂F

∂Φ
,
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FIG. 5: The free energy of s SC ring is a periodic function of the threading magnetic flux.

where F is the free energy. It follows that I = 0 at Φ = 0 and Φ0/2. A schematic plot of the

free energy is shown in Fig. 5. One can see that the system is in stable equilibrium when

Φ = `Φ0 (` is an integer), and the flux would be quantized at these values. If the applied

flux does not satisfy this condition, then the current in Eq. (108) would flow. The current

won’t stop until the induced magnetic flux plus the external flux equals a quantized value.

However, experiments found that the flux inside a SC ring is quantized at Φ0/2, instead

of Φ0. This is of course due to the Cooper pair (which has charge 2e), but what’s wrong

with the very general argument above?

Let’s consider a thin ring with circumference L. The coordinate inside the ring is denoted

as x. Since the two electrons of a Cooper pair are correlated, the condition

Ψ′(x1, · · · , xp + L, · · · ) = Ψ′(x1, · · · , xp, · · · ) (109)

can be relaxed to (p, q are paired)

Ψ′(x1, · · · , xp + L, · · · , xq + L, · · · ) = Ψ′(x1, · · · , xp, · · · , xq, · · · ). (110)

This allows the possibility of

Ψ′(x1, · · · , xp + L, · · · ) = −Ψ′(x1, · · · , xp, · · · ). (111)

For example, consider the wave function of a Cooper pair in a ring (see Eqs. (8) and (10))

,

ψ =

(∑
l

gle
il(φ1−φ2)

)
eiM

φ1+φ2
2 , (112)
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where l is the quantum number for the relative motion, and M is the angular momentum

of the c.m. motion. If M = 2m is an even integer, then

ψ =
∑

l

gle
i(m+l)φ1ei(m−l)φ2 . (113)

If M = 2m+ 1, then

ψ =
∑

l

gle
i(m+ 1

2
+l)φ1ei(m+ 1

2
−l)φ2 . (114)

For the second case, a single-particle wave function changes sign when φ1,2 → φ1,2 + 2π, but

the wave function of the Cooper pair does not change sign. That is, a change of flux by Φ0/2

is enough to bring the system back to its initial state, so the free energy would be periodic

in half of the flux quantum (see Ref. 3, p.242).

A. Persistent in a normal metal ring

Consider a clean metal ring at low temperature (but not superconducting), so that an

electron would be able to maintain its phase coherence after circling the ring once. In reality

the magnetic field can penetrate through the metal and the pure gauge condition (Eq. (100))

is not strictly valid. Nevertheless, the analysis above Eq. (108) still applies approximately,

so that the free energy is periodic in Φ0.

Since there is no Meissner effect to screen out the magnetic flux, the flux threading

through the ring does not have to be quantized. Therefore, in general ∂F/∂Φ 6= 0, and

according to Eq. (108) there is a current inside the ring. This is called a persistent current

since it persists as long as the external flux is there. Such a non-dissipative current has been

verified by experiments in 1989.

APPENDIX A: CONNECTION WITH COHERENT STATE

1. Boson coherent state

Firstly, a short review of boson coherent state:

|λ〉 = e−|λ|
2/2eλa†|0〉 (A1)

= e−|λ|
2/2

∞∑
n=0

λn

√
n!
|n〉.
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It is an eigenstate of the annihilation operator,

a|λ〉 = λ|λ〉, and n̄ = 〈λ|n̂|λ〉 = |λ|2. (A2)

In general,

λ = |λ|eiθ =
√
n̄eiθ. (A3)

It’s not difficult to see from Eq. (A1) that

1

i

∂

∂θ
|λ〉 = n̂|λ〉. (A4)

Therefore n̂ ' 1
i

∂
∂θ

, and just like the uncertainty relation, we have

∆n∆θ ≥ 1

2
. (A5)

That is, one cannot fix the values of n and θ simultaneously.

Note: The relation n̂ ' 1
i

∂
∂θ

cannot be exact. If it is, then

[n̂, θ̂] =
1

i
, (A6)

which leads to

(n− n′)〈n|θ̂|n′〉 =
1

i
δnn′ . (A7)

This leads to contradiction when n = n′. That is why there can be no angle (or phase)

operator in quantum mechanics. However, for a system with large n, when the fluctuation

(uncertainty) is of little significance, the angle operator can be used in an approximate

manner.

2. BCS coherent state

If we consider the Cooper pair as a single entity and define

b†k = c†k↑c
†
−k↓, (A8)

then

[bk, b
†
k′ ] = (1− n̂k↑ − n̂−k↓) δkk′ . (A9)

Therefore, the new entity is not exactly a boson with the usual commutation relation. Also,(
b†k

)2

= 0, so it still has the fermion character.
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How did Schrieffer arrive at the BCS wave function in Eq. (21)? He pictured the BCS

state as a coherent state of Cooper pairs and wrote

|ΨBCS〉 = e
∑

k αkb†k |0〉 (A10)

=
∏

k

eαkb†k |0〉 due to Eq. (A9)

=
∏

k

(
1 + αkb

†
k

)
|0〉.

After suitable normalization, we then have the BCS state in Eq. (21)

When expanded in states with n Cooper pairs, we have

|ΨBCS〉 =
M∑

n=0

ane
inφ|n〉. (A11)

This is sharply peaked around n̄. Similar to Eq. (A4), one has

1

i

∂

∂φ
|ΨBCS〉 = n̂|ΨBCS〉. (A12)

Also,

〈ΨBCS(φ′)|ΨBCS(φ)〉 =
M∑

np=0

ein(φ−φ′)|an|2. (A13)

For a macroscopic system, due to the rapid oscillation of ein̄(φ−φ′), this product drops rapidly

to zero as soon as φ 6= φ′.

APPENDIX B: CONNECTION WITH SPONTANEOUS SYMMETRY BREAK-

ING (SSB)

1. SSB in a ferromagnet (FM)

The following ferromagnetic Heisenberg Hamiltonian is invariant under SO(3) rotations,

H = −
∑
<i,j>

Si · Sj. (B1)

However, its ground state is a ferromagnetic state,

|Ψ0〉 = | ↑↑↑ · · · ↑〉, (B2)
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which only has SO(2) symmetry (around the magnetization axis). So the symmetry of the

ground state is not the same as that of the Hamiltonian. This is called Spontaneous

Symmetry Breaking (SSB).

The manifold of the FM ground state is

SO(3)/SO(2) = S2, a sphere. (B3)

The magnetization m of a ground state points to a particular point on this sphere. It costs

no energy to globally rotate m around S2, so the excitation energy of a spin wave approaches

zero (gapless) at long wavelength limit. This is a special case of the Goldstone theorem.

Goldstone theorem states that, if a continuous symmetry (with a group manifold

G) is broken (to a smaller manifold H), then there will be gapless excitations. These

gapless excitations are called the Nambu-Goldstone mode (NG mode). The number of

Nambu-Goldstone modes is equal to, or less than, dim G − dim H (Nayak’s lecture note).

For example (h is an external magnetic field),

• FM: SO(3) → SO(2), # of NG mode = 1.

• AFM: SO(3) → SO(2), # of NG mode = 2.

• FM+h: SO(2) → SO(2), # of NG mode = 0.

2. SSB in a BCS state

The BCS Hamiltonian in Eq. (32) conserves charge,

[HBCS, N̂ ] = 0, (B4)

where N̂ =
∑

ks c
†
kscks, which is a generator of U(1) symmetry (see below). However, the

BCS ground state does not conserve charge,

〈ΨBCS|c†k↑c
†
−k↓|ΨBCS〉 6= 0. (B5)

So the U(1) symmetry is broken (to Z2, to be precise).

If |ΨBCS〉 has a global phase φ, i.e.,

|ΨBCS(φ)〉 =
∏

k

(
uk + |vk|eiφc†k↑c

†
−k↓

)
|0〉, (B6)
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then

eiχN̂ |ΨBCS(φ)〉 = |ΨBCS(φ+ 2χ)〉. (B7)

So eiχN̂ is the generator of a U(1) symmetry. The rotated coherent state overlaps little with

|ΨBCS(φ)〉 (See App. A). A ground state picks up a particular phase φ0, and slight deviation

from this point costs no energy (gapless phase mode).

In reality, there is no gapless phase mode in a superconductor. This NG mode would

couple with a massless photon field (U(1) gauge field), so that the former disappears, and

the latter becomes massive. This is called the Anderson-Higgs mechanism. A massive

photon has three degrees of freedom, which is equal to the original degrees of freedom

(one from the NG mode, two from the massless photon). Massive longitudinal photons are

plasmons (with an energy gap), and massive transverse photons cause the Meissner effect.

More discussions on this topic can be found in Ref. 6.

Prob. 1 Calculate ∑
k1k2

〈ΨG|c†k1↑ck1↑c
†
k2↑ck2↑|ΨG〉

and
∑
k1k2

〈ΨG|c†k1↑ck1↑c
†
k2↓ck2↓|ΨG〉,

where

|ΨG〉 =
∏

k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉.

Prob. 2 Show that

〈ΨG|c†k1↑c
†
−k1↓c−k2↓ck2↑|ΨG〉 = uk1v

∗
k1
u∗k2

vk2 .
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