
Berry Phase Effects on Electronic Properties

Di Xiao

Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Ming-Che Chang

Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan

Qian Niu

Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA

(Dated: January 5, 2010)

Ever since its discovery, the notion of Berry phase has permeated through all branches of physics.
Over the last three decades, it was gradually realized that the Berry phase of the electronic wave
function can have a profound effect on material properties and is responsible for a spectrum
of phenomena, such as polarization, orbital magnetism, various (quantum/anomalous/spin) Hall
effects, and quantum charge pumping. This progress is summarized in a pedagogical manner
in this review. We start with a brief summary of necessary background, and give a detailed
discussion of the Berry phase effect in a variety of solid state applications. A common thread of the
review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study
of electron dynamics in the presence of electromagnetic fields and more general perturbations.
Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an
effective quantum theory. It is clear that the Berry phase should be added as an essential ingredient
to our understanding of basic material properties.
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I. INTRODUCTION

A. Topical overview

In 1984, Michael Berry wrote a paper that has gen-
erated immense interests throughout the different fields
of physics including quantum chemistry (Berry, 1984).
This is about the adiabatic evolution of an eigenenergy
state when the external parameters of a quantum sys-
tem change slowly and make up a loop in the parameter
space. In the absence of degeneracy, the eigenstate will
surely come back to itself when finishing the loop, but
there will be a phase difference equal to the time integral
of the energy (divided by h̄) plus an extra, which is now
commonly known as the Berry phase.

The Berry phase has three key properties that make
the concept important (Bohm et al., 2003; Shapere and
Wilczek, 1989a). First, it is gauge invariant. The eigen-
wavefunction is defined by a homogeneous linear equation
(the eigenvalue equation), so one has the gauge freedom
of multiplying it with an overall phase factor which can be
parameter dependent. The Berry phase is unchanged (up
to integer multiple of 2π) by such a phase factor, provided
the eigen-wavefunction is kept to be single valued over the
loop. This property makes the Berry phase physical, and
the early experimental studies were focused on measuring
it directly through interference phenomena.

Second, the Berry phase is geometrical. It can be writ-
ten as a line-integral over the loop in the parameter space,
and does not depend on the exact rate of change along
the loop. This property makes it possible to express the
Berry phase in terms of local geometrical quantities in
the parameter space. Indeed, Berry himself showed that
one can write the Berry phase as an integral of a field,
which we now call as the Berry curvature, over a surface
suspending the loop. A large class of applications of the
Berry phase concept occur when the parameters them-
selves are actually dynamical variables of slow degrees of
freedom. The Berry curvature plays an essential role in
the effective dynamics of these slow variables. The vast
majority of applications considered in this review are of
this nature.

Third, the Berry phase has close analogies to gauge
field theories and differential geometry (Simon, 1983).
This makes the Berry phase a beautiful, intuitive and
powerful unifying concept, especially valuable in today’s
ever specializing physical science. In primitive terms,
the Berry phase is like the Aharonov-Bohm phase of a
charged particle traversing a loop including a magnetic
flux, while the Berry curvature is like the magnetic field.
The integral of the Berry curvature over closed surfaces,
such as a sphere or torus, is known to be topological and

quantized as integers (Chern numbers). This is analogous
to the Dirac monopoles of magnetic charges that must be
quantized in order to have a consistent quantum mechan-
ical theory for charged particles in magnetic fields. Inter-
estingly, while the magnetic monopoles are yet to be de-
tected in the real world, the topological Chern numbers
have already found correspondence with the quantized
Hall conductance plateaus in the spectacular quantum
Hall phenomenon (Thouless et al., 1982).

This review is about applications of the Berry phase
concept in solid state physics. In this field, we are typ-
ically interested in macroscopic phenomena which are
slow in time and smooth in space in comparison with
the atomic scales. Not surprisingly, the vast majority of
applications of the Berry phase concept are found here.
This field of physics is also extremely diverse, and we
have many layers of theoretical frameworks with differ-
ent degrees of transparency and validity (Ashcroft and
Mermin, 1976a; Marder, 2000). Therefore, a unifying
organizing principle such as the Berry phase concept is
particularly valuable.

We will focus our attention on electronic properties,
which play a dominant role in various aspects of mate-
rial properties. The electrons are the glue of materials
and they are also the agents responding swiftly to exter-
nal fields and giving rise to strong and useful signals. A
basic paradigm of the theoretical framework is based on
the assumption that electrons are in Bloch waves trav-
eling more or less independently in periodic potentials
of the lattice, except that the Pauli exclusion principle
has to be satisfied and electron-electron interactions are
taken care of in some self-consistent manner. Much of
our intuition on electron transport is derived from the
semiclassical picture that the electrons behave almost as
free particles in response to external fields provided one
uses the band energy in place of the free-particle dis-
persion. Partly for this reason, first-principles studies of
electronic properties tend to document only the energy
band structures and various density profiles.

There have been overwhelming evidences that such a
simple picture cannot give complete account of effects to
first order in electromagnetic fields. A prime example is
the anomalous velocity, a correction to the usual quasi-
particle group velocity from the band energy dispersion.
This correction can be understood from a linear response
analysis: the velocity operator has off-diagonal elements
and electric field mixes the bands, so that the expectation
value of the velocity acquires an additional term to first
order in the field (Karplus and Luttinger, 1954; Kohn
and Luttinger, 1957). The anomalous velocity can also
be understood as due to the Berry curvature of the Bloch
states, which exist in the absence of the external fields
and manifest in the quasi-particle velocity when the crys-
tal momentum is moved by external forces (Chang and
Niu, 1995, 1996; Sundaram and Niu, 1999). This un-
derstanding enabled us to make a direct connection with
the topological Chern number formulation of the quan-
tum Hall effect (Kohmoto, 1985; Thouless et al., 1982),
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providing motivation as well as confidence in our pursuit
of the eventually successful intrinsic explanation of the
anomalous Hall effect (Jungwirth et al., 2002; Nagaosa
et al., 2010).

Interestingly enough, the traditional view cannot even
explain some basic effects to zeroth order of the fields.
The two basic electromagnetic properties of solids as a
medium are the electric polarization and magnetization,
which can exist in the absence of electric and magnetic
fields in ferroelectric and ferromagnetic materials. Their
classical definition were based on the picture of bound
charges and currents, but these are clearly inadequate
for the electronic contribution and it was known that
the polarization and orbital magnetization cannot be de-
termined from the charge and current densities in the
bulk of a crystal at all. A breakthrough on electric po-
larization were made in early 90s by linking it with the
phenomenon of adiabatic charge transport and express-
ing it in terms of the Berry phase 1 across the entire
Brillouin zone (King-Smith and Vanderbilt, 1993; Resta,
1992). Based on the Berry phase formula, one can now
routinely calculate polarization related properties using
first principles methods, with a typical precision of the
density functional theory. The breakthrough on orbital
magnetization came only recently, showing that it not
only consists of the orbital moments of the quasi par-
ticles but also contains a Berry curvature contribution
of topological origin (Shi et al., 2007; Thonhauser et al.,
2005; Xiao et al., 2005).

In this article, we will follow the traditional semiclas-
sical formalism of quasiparticle dynamics, only to make
it more rigorous by including the Berry curvatures in
the various facets of the phase space including the adia-
batic time parameter. All of the above mentioned effects
are transparently revealed with complete precision of the
full quantum theory. A number of new and related ef-
fects, such as in anomalous thermoelectric, valley Hall
and magneto-transport, are easily predicted, and other
effects due to crystal deformation and order parameter
inhomogeneity can also be explored without difficulty.
Moreover, by including Berry-phase induced anomalous
transport between collisions and ‘side-jumps’ during col-
lisions (which is itself a kind of Berry phase effect), the
semiclassical Boltzmann transport theory can give com-
plete account of linear response phenomena in weakly
disordered systems (Sinitsyn, 2008). On a microscopic
level, although the electron wavepacket dynamics is yet
to be directly observed in solids, the formalism has been
replicated for light transport in photonic crystals, where
the associated Berry phase effects are vividly exhibited
in experiments (Bliokh et al., 2008). Finally, it is pos-
sible to generalize the semiclassical dynamics in a sin-

1 Also called Zak’s phase, it is independent of the Berry curva-
ture which only characterize Berry phases over loops continu-
ously shrinkable to zero (Zak, 1989a).

gle band into one with degenerate or nearly degenerate
bands (Culcer et al., 2005; Shindou and Imura, 2005),
and one can study transport phenomena where interband
coherence effects such as in spin transport, only to real-
ize that the Berry curvatures and quasiparticle magnetic
moments become non-abealian (i.e., matrices).

The semiclassical formalism is certainly amendable to
include quantization effects. For integrable dynamics,
such as Bloch oscillations and cyclotron orbits, one can
use the Bohr-Sommerfeld or EKB quantization rule. The
Berry phase enters naturally as a shift to the classical ac-
tion, affecting the energies of the quantized levels, e.g.,
the Wannier-Stark ladders and the Landau levels. A
high point of this kind of applications is the explanation
of the intricate fractal-like Hofstadter spectrum (Chang
and Niu, 1995, 1996). A recent breakthrough has also
enabled us to find the density of quantum states in the
phase space for the general case (including non-integrable
systems) (Xiao et al., 2005), revealing Berry-curvature
corrections which should have broad impacts on calcula-
tions of equilibrium as well as transport properties. Fi-
nally, one can execute a generalized Peierls substitution
relating the physical variables to the canonical variables,
turning the semiclassical dynamics into a full quantum
theory valid to first order in the fields (Chang and Niu,
2008). Spin-orbit coupling and anomalous corrections to
the velocity and magnetic moment are all found a simple
explanation from this generalized Peierls substitution.

Therefore, it is clear that Berry phase effects in solid
state physics are not something just nice to be found here
and there, the concept is essential for a coherent under-
standing of all the basic phenomena. It is the purpose of
this review to summarize a theoretical framework which
continues the traditional semiclassical point of view but
with a much broader range of validity. It is necessary
and sufficient to include the Berry phases and gradient
energy corrections in addition to the energy dispersions
in order to account all phenomena up to first order in the
fields.

B. Organization of the review

This review can be divided into three main parts. In
Sec. II we consider the simplest example of Berry phase
in crystals: the adiabatic transport in a band insulator.
In particular, we show that induced adiabatic current
due to a time-dependent perturbation can be written as
a Berry phase of the electronic wave functions. Based on
this understanding, the modern theory of electric polar-
ization is reviewed. In Sec. III the electron dynamics in
the presence of an electric field is discussed as a specific
example of the time-dependent problem, and the basic
formula developed in Sec. II can be directly applied. In
this case, the Berry phase is made manifest as transverse
velocity of the electrons, which gives rise to a Hall cur-
rent. We then apply this formula to study the quantum,
anomalous, and valley Hall effect.
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To study the electron dynamics under spatial-
dependent perturbations, we turn to the semiclassical
formalism of Bloch electron dynamics, which has proven
to be a powerful tool to investigate the influence of slowly
varying perturbations on the electron dynamics. Sec. IV,
we discuss the construction of the electron wavepacket
and show that the wavepacket carries an orbital magnetic
moment. Two applications of the wavepacket approach,
the orbital magnetization, and anomalous thermoelectric
transport in ferromagnet are discussed. In Sec. V the
wavepacket dynamics in the presence of electromagnetic
fields is studied. We show that the Berry phase not only
affects the equations of motion, but also modifies the
electron density of states in the phase space, which can
be changed by applying a magnetic field. The formula
of orbital magnetization is rederived using the modified
density of states. We also present a comprehensive study
of the magneto-transport in the presence of the Berry
phase. The electron dynamics under more general per-
turbations is discussed in Sec. VI. We again present two
applications: electron dynamics in deformed crystals and
polarization induced by inhomogeneity.

In the remaining part of the review, we focus on the re-
quantization of the semiclassical formulation. In Sec. VII,
the Bohr-Sommerfeld quantization is reviewed in detail.
With its help, one can incorporate the Berry phase effect
into the Wannier-Stark ladders and the Landau levels
very easily. In Sec. VIII, we show that the same semi-
classical approach can be applied to systems subject to
a very strong magnetic field. One only has to separate
the field into a quantization part and a perturbation.
The former should be treated quantum mechanically to
obtain the magnetic Bloch band spectrum while the lat-
ter is treated perturbatively. Using this formalism, the
cyclotron motion, the splitting into magnetic subbands,
and the quantum Hall effect are discussed. In Sec. IX, we
review recent advances on the non-Abelian Berry phase
in degenerate bands. The Berry connection now plays
an explicit role in spin dynamics and is deeply related
to the spin-orbit interaction. The relativistic Dirac elec-
trons and the Kane model in semiconductors are cited as
two examples of application. Finally, we briefly discuss
the re-quantization of the semiclassical theory and the
hierarchy of effective quantum theories.

We do not attempt to cover all of the Berry phase ef-
fects in this review. Interested readers can consult the
following books or review articles for many more left un-
mentioned: Bohm et al. (2003); Chang and Niu (2008);
Nenciu (1991); Resta (1994, 2000); Shapere and Wilczek
(1989b); Teufel (2003); Thouless (1998). In this review,
we focus on a pedagogical and self-contained approach,
with the main machinery being the semiclassical formal-
ism of Bloch electron dynamics (Chang and Niu, 1995,
1996; Sundaram and Niu, 1999). We shall start with
the simplest case, then gradually expand the formalism
as more complicated physical situations are considered.
Whenever a new ingredient is added, a few applications
is provided to demonstrate the basic ideas. The vast

number of application we discussed is a reflection of the
universality of the Berry phase effect.

C. Basic Concepts of The Berry phase

In this subsection we introduce the basic concepts of
the Berry phase. Following Berry’s original paper (Berry,
1984), we first discuss how the Berry phase arises during
the adiabatic evolution of a quantum state. We then in-
troduce the local description of the Berry phase in terms
of the Berry curvature. A two-level model is used to
demonstrate these concepts as well as some important
properties, such as the quantization of the Berry phase.
Our aim is to provide a minimal but self-contained in-
troduction. For a detailed account of the Berry phase,
including its mathematical foundation and applications
in a wide range of fields in physics, we refer the readers
to the books by Bohm et al. (2003); Shapere and Wilczek
(1989b) and references therein.

1. Cyclic adiabatic evolution

Let us consider a physical system described by a Hamil-
tonian that depends on time through a set of parameters,
denoted by R = (R1, R2, . . . ), i.e.,

H = H(R) , R = R(t) . (1.1)

We are interested in the adiabatic evolution of the system
as R(t) moves slowly along a path C in the parameter
space. For this purpose, it will be useful to introduce an
instantaneous orthonormal basis from the eigenstates of
H(R) at each value of the parameter R, i.e.,

H(R)|n(R)〉 = εn(R)|n(R)〉 . (1.2)

However, Eq. (1.2) alone does not completely determine
the basis function |n(R)〉; it still allows an arbitrary R-
dependent phase factor of |n(R)〉. One can make a phase
choice, also known as a gauge, to remove this arbitrari-
ness. Here we require that the phase of the basis function
is smooth and single-valued along the path C in the pa-
rameter space. 2

According to the quantum adiabatic theorem (Kato,
1950; Messiah, 1962), a system initially in one of its eigen-
states |n(R(0))〉 will stay as an instantaneous eigenstate
of the Hamiltonian H(R(t)) throughout the process (A
derivation can be found in Appendix A). Therefore the

2 Strictly speaking, such a phase choice is guaranteed only in fi-
nite neighborhoods of the parameter space. In the general case,
one can proceed by dividing the path into several such neigh-
borhoods overlapping with each other, then use the fact that in
the overlapping region the wave functions are related by a gauge
transformation of the form (1.7).
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only degree of freedom we have is the phase of the quan-
tum state. Write the state at time t as

|ψn(t)〉 = eiγn(t)e−
i
h̄

R t
0 dt′εn(R(t′))|n(R(t))〉 , (1.3)

where the second exponential is known as the dynamical
phase factor. Inserting Eq. (1.3) into the time-dependent
Schrödinger equation

ih̄
∂

∂t
|ψn(t)〉 = H(R(t))|ψn(t)〉 (1.4)

and multiplying it from the left by 〈n(R(t))|, one finds
that γn can be expressed as a path integral in the param-
eter space

γn =
∫
C
dR ·An(R) , (1.5)

where An(R) is a vector-valued function

An(R) = i〈n(R)| ∂
∂R

|n(R)〉 . (1.6)

This vector An(R) is called the Berry connection or the
Berry vector potential. Equation (1.5) shows that in ad-
dition to the dynamical phase, the quantum state will
acquire an additional phase γn during the adiabatic evo-
lution.

Obviously, An(R) is gauge-dependent. If we make a
gauge transformation

|n(R)〉 → eiζ(R)|n(R)〉 (1.7)

with ζ(R) being an arbitrary smooth function, An(R)
transforms according to

An(R) → An(R)− ∂

∂R
ζ(R) . (1.8)

Consequently, the phase γn given by Eq. (1.5) will be
changed by ζ(R(0))− ζ(R(T )) after the transformation,
where R(0) and R(T ) are the initial and final points
of the path C. This observation has led Fock (1928) to
conclude that one can always choose a suitable ζ(R) such
that γn accumulated along the path C is canceled out,
leaving Eq. (1.3) with only the dynamical phase. Because
of this, the phase γn has long been deemed unimportant
and it was usually neglected in the theoretical treatment
of time-dependent problems.

This conclusion remained unchallenged until Berry
(1984) reconsidered the cyclic evolution of the system
along a closed path C with R(T ) = R(0). The phase
choice we made earlier on the basis function |n(R)〉 re-
quires eiζ(R) in the gauge transformation, Eq. (1.7), to
be single-valued, which implies

ζ(R(0))− ζ(R(T )) = 2π × integer . (1.9)

This shows that γn can be only changed by an integer
multiple of 2π under the gauge transformation (1.7) and
it cannot be removed. Therefore for a closed path, γn

becomes a gauge-invariant physical quantity, now known
as the Berry phase or geometric phase in general; it is
given by

γn =
∮
C
dR ·An(R) . (1.10)

From the above definition, we can see that the Berry
phase only depends on the geometric aspect of the closed
path, and is independent of how R(t) varies in time. The
explicit time-dependence is thus not essential in the de-
scription of the Berry phase and will be dropped in the
following discussion.

2. Berry curvature

It is useful to define, in analogy to electrodynamics, a
gauge field tensor derived from the Berry vector poten-
tial:

Ωn
µν(R) =

∂

∂Rµ
An

ν (R)− ∂

∂Rν
An

µ(R)

= i
[
〈∂n(R)
∂Rµ

|∂n(R)
∂Rν

〉 − (ν ↔ µ)
]
.

(1.11)

This field is called the Berry curvature. Then according
to Stokes’s theorem the Berry phase can be written as a
surface integral

γn =
∫
S
dRµ ∧ dRν 1

2
Ωn

µν(R) , (1.12)

where S is an arbitrary surface enclosed by the path C.
It can be verified from Eq. (1.11) that, unlike the Berry
vector potential, the Berry curvature is gauge invariant
and thus observable.

If the parameter space is three-dimensional, Eqs. (1.11)
and (1.12) can be recast into a vector form

Ωn(R) = ∇R ×An(R) , (1.11’)

γn =
∫
S
dS ·Ωn(R) . (1.12’)

The Berry curvature tensor Ωn
µν and vector Ωn is related

by Ωn
µν = εµνξ(Ωn)ξ with εµνξ being the Levi-Civita an-

tisymmetry tensor. The vector form gives us an intuitive
picture of the Berry curvature: it can be viewed as the
magnetic field in the parameter space.

Besides the differential formula given in Eq. (1.11), the
Berry curvature can be also written as a summation over
the eigenstates:

Ωn
µν(R) = i

∑
n′ 6=n

〈n| ∂H
∂Rµ |n′〉〈n′| ∂H

∂Rν |n〉 − (ν ↔ µ)
(εn − εn′)2

.

(1.13)
It can be obtained from Eq. (1.11) by using the relation
〈n|∂H/∂R|n′〉 = 〈∂n/∂R|n′〉(εn − εn′) for n′ 6= n. The
summation formula has the advantage that no differenti-
ation on the wave function is involved, therefore it can be
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evaluated under any gauge choice. This property is par-
ticularly useful for numerical calculations, in which the
condition of a smooth phase choice of the eigenstates is
not guaranteed in standard diagonalization algorithms.
It has been used to evaluate the Berry curvature in crys-
tals with the eigenfunctions supplied from first-principles
calculations (Fang et al., 2003; Yao et al., 2004).

Equation (1.13) offers further insight on the origin of
the Berry curvature. The adiabatic approximation we
adopted earlier is essentially a projection operation, i.e.,
the dynamics of the system is restricted to the nth energy
level. In view of Eq. (1.13), the Berry curvature can be
regarded as the result of the “residual” interaction of
those projected-out energy levels. In fact, if all energy
levels are included, it follows from Eq. (1.13) that the
total Berry curvature vanishes for each value of R,∑

n

Ωn
µν(R) = 0 . (1.14)

This is the local conservation law for the Berry curva-
ture. 3 Equation (1.13) also shows that Ωn

µν(R) be-
comes singular if two energy levels εn(R) and εn′(R)
are brought together at certain value of R. This degen-
eracy point corresponds to a monopole in the parameter
space; an explicit example is given below. If the degen-
erate points form a string in the parameter space, it is
known as the Dirac string.

So far we have discussed the situation where a single
energy level can be separated out in the adiabatic evolu-
tion. However, if the energy levels are degenerate, then
the dynamics must be projected to a subspace spanned
by those degenerate eigenstates. Wilczek and Zee (1984)
showed that in this situation non-Abelian Berry curva-
ture naturally arises. Culcer et al. (2005); Shindou and
Imura (2005) have discussed the non-Abelian Berry cur-
vature in the context of degenerate Bloch bands. In the
following we shall focus on the Abelian formulation and
defer the discussion of the non-Abelian Berry curvature
to Sec. IX.

Compared to the Berry phase which is always asso-
ciated with a closed path, the Berry curvature is truly
a local quantity. It provides a local description of the
geometric properties of the parameter space. Moreover,
so far we have treated the adiabatic parameters as pas-
sive quantities in the adiabatic process, i.e., their time
evolution is given from the outset. Later we will show
that the parameters can be regarded as dynamical vari-
ables and the Berry curvature will directly participate in
the dynamics of the adiabatic parameters (Kuratsuji and

3 The conservation law is obtained under the condition that the
full Hamiltonian is known. However, in practice one usually deals
with effective Hamiltonians which are obtained through some
projection process of the full Hamiltonian. Therefore there will
always be some “residual” Berry curvature accompanying the
effective Hamiltonian. See Chang and Niu (2008) and discussions
in Sec. IX.

Iida, 1985). In this sense, the Berry curvature is a more
fundamental quantity than the Berry phase.

3. Example: The two-level system

Let us consider a concrete example: a two-level system.
The purpose to study this system is two-fold. Firstly, as
a simple model, it demonstrates the basic concepts as
well as several important properties of the Berry phase.
Secondly, it will be repeatedly used later in this article,
although in different physical context. It is therefore use-
ful to go through the basis of this model.

The generic Hamiltonian of a two-level system takes
the following form

H = h(R) · σ , (1.15)

where σ is the Pauli matrices. Despite its simple form,
the above Hamiltonian describes a number of physi-
cal systems in condensed matter physics for which the
Berry phase effect has been discussed. Examples in-
clude spin-orbit coupled systems (Culcer et al., 2003; Liu
et al., 2008), linearly conjugated diatomic polymers (Rice
and Mele, 1982; Su et al., 1979), one-dimensional fer-
roelectrics (Onoda et al., 2004b; Vanderbilt and King-
Smith, 1993), graphene (Haldane, 1988; Semenoff, 1984),
and Bogoliubov quasiparticles (Zhang et al., 2006).

Parameterize h by its azimuthal angle θ and polar an-
gle φ, h = h(sin θ cosφ, sin θ sinφ, cos θ). The two eigen-
states with energies ±h are

|u−〉 =
(

sin θ
2e
−iφ

− cos θ
2

)
, |u+〉 =

(
cos θ

2e
−iφ

sin θ
2

)
. (1.16)

We are, of course, free to add an arbitrary phase to these
wave functions. Let us consider the lower energy level.
The Berry connection is given by

Aθ = 〈u|i∂θu〉 = 0 , (1.17a)

Aφ = 〈u|i∂φu〉 = sin2 θ

2
, (1.17b)

and the Berry curvature is

Ωθφ = ∂θAφ − ∂φAθ =
1
2

sin θ . (1.18)

However, the phase of |u−〉 is not defined at the south
pole (θ = π). We can choose another gauge by multiply-
ing |u−〉 by eiφ so that the wave function is smooth and
single valued everywhere except at the north pole. Under
this gauge we find Aθ = 0 and Aφ = − cos2 θ

2 , and the
same expression for the Berry curvature as in Eq. (1.18).
This is not surprising because the Berry curvature is a
gauge-independent quantity and the Berry connection is
not. 4

4 One can verify that |u〉 = (sin θ
2
e−iβφ,− cos θ

2
ei(β−1)φ)T is also
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If h(R) depends on a set of parameters R, then

ΩR1R2 =
1
2
∂(φ, cos θ)
∂(R1, R2)

. (1.19)

Several important properties of the Berry curvature
can be revealed by considering the specific case of h =
(x, y, z). Using Eq. (1.19), we find the Berry curvature
in its vector form

Ω =
1
2

h

h3
. (1.20)

One recognizes that Eq. (1.20) is the field generated by
a monopole at the origin h = 0 (Dirac, 1931; Sakurai,
1993; Wu and Yang, 1975), where the two energy levels
become degenerate. Therefore the degeneracy points act
as sources and drains of the Berry curvature flux. Inte-
grate the Berry curvature over a sphere containing the
monopole, which is the Berry phase on the sphere; we
find

1
2π

∫
S2
dθdφΩθφ = 1 . (1.21)

In general, the Berry curvature integrated over a closed
manifold is quantized in the units of 2π and equals to the
net number of monopoles inside. This number is called
the Chern number and is responsible for a number of
quantization effects discussed below.

D. Berry phase in Bloch bands

In the above we have introduced the basic concepts
of the Berry phase for a generic system described by a
parameter-dependent Hamiltonian. We now consider its
realization in crystalline solids. As we shall see, the band
structure of crystals provides a natural platform to inves-
tigate the occurrence of the Berry phase effect.

Within the independent electron approximation, the
band structure of a crystal is determined by the following
Hamiltonian for a single electron:

H =
p̂2

2m
+ V (r) , (1.22)

where V (r + a) = V (r) is the periodic potential with
a being the Bravais lattice vector. According to Bloch’s
theorem, the eigenstates of a periodic Hamiltonian satisfy
the following boundary condition 5

ψnq(r + a) = eiq·aψnq(r) , (1.23)

an eigenstate. The phase accumulated by such a state along the
loop defined by θ = π/2 is Γ = 2π(β − 1

2
), which seems to imply

that the Berry phase is gauge-dependent. This is because for an
arbitrary β the basis function |u〉 is not single-valued; one must
also trace the phase change in the basis function. For integral
value of β the function |u〉 is single-valued along the loop and
the Berry phase is well-defined up to an integer multiple of 2π.

5 Through out this article, q refers to the canonical momentum
and k is reserved for mechanical momentum.

where n is the band index and h̄q is the crystal momen-
tum, which resides in the Brillouin zone. Thus the sys-
tem is described by a q-independent Hamiltonian with
a q-dependent boundary condition, Eq. (1.23). To com-
ply with the general formalism of the Berry phase, we
make the following unitary transformation to obtain a
q-dependent Hamiltonian:

H(q) = e−iq·rHeiq·r =
(p̂ + h̄q)2

2m
+ V (r) . (1.24)

The transformed eigenstate unq(r) = e−iq·rψnq(r) is just
the cell-periodic part of the Bloch function. It satisfies
the strict periodic boundary condition

unq(r + a) = unq(r) . (1.25)

This boundary condition ensures that all the eigenstates
live in the same Hilbert space. We can thus identify the
Brillouin zone as the parameter space of the transformed
Hamiltonian H(q), and |un(q)〉 as the basis function.

Since the q-dependence of the basis function is inherent
to the Bloch problem, various Berry phase effects are
expected in crystals. For example, if q is forced to vary
in the momentum space, then the Bloch state will pick
up a Berry phase:

γn =
∮
C
dq · 〈un(q)|i∇q|un(q)〉 . (1.26)

We emphasize that the path C must be closed to make
γn a gauge-invariant quantity with physical significance.

Generally speaking, there are two ways to generate a
closed path in the momentum space. One can apply a
magnetic field, which induces a cyclotron motion along a
closed orbit in the q-space. This way the Berry phase can
manifest in various magneto-oscillatory effects (Mikitik
and Sharlai, 1999, 2004, 2007), which have been observed
in metallic compound LaRhIn5 (Goodrich et al., 2002),
and most recently, graphene systems (Novoselov et al.,
2005, 2006; Zhang et al., 2005). Such a closed orbit is
possible only in two or three-dimensional systems (see
Sec. VII.A). Following our discussion in Sec. I.C, we can
define the Berry curvature of the energy bands, given by

Ωn(q) = ∇q × 〈un(q)|i∇q|un(q)〉 . (1.27)

The Berry curvature Ωn(q) is an intrinsic property of
the band structure because it only depends on the wave
function. It is nonzero in a wide range of materials, in
particular, crystals with broken time-reversal or inversion
symmetry. In fact, once we have introduced the concept
of the Berry curvature, a closed loop is not necessary be-
cause the Berry curvature itself is a local gauge-invariant
quantity. It is now well recognized that information of
the Berry curvature is essential in a proper description of
the dynamics of Bloch electrons, which has various effects
on transport and thermodynamic properties of crystals.

One can also apply an electric field to cause a linear
variation of q. In this case, a closed path is realized when
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q sweeps the entire Brillouin zone. To see this, we note
that the Brillouin zone has the topology of a torus: the
two points q and q + G can be identified as the same
point, where G is the reciprocal lattice vector. This can
be seen by noting that |ψn(q)〉 and |ψn(q + G)〉 satisfy
the same boundary condition in Eq. (1.23), therefore they
can at most differ by a phase factor. The torus topology
is realized by making the phase choice |ψn(q)〉 = |ψn(q+
G)〉. Consequently, |un(q)〉 and |un(q + G)〉 satisfy the
following phase relation

unq(r) = eiG·runq+G(r) . (1.28)

This gauge choice is called the periodic gauge (Resta,
2000).

In this case, the Berry phase across the Brillouin zone
is called Zak’s phase (Zak, 1989a)

γn =
∫

BZ

dq · 〈un(q)|i∇q|un(q)〉 . (1.29)

It plays an important role in the formation of Wannier-
Stark ladders (Wannier, 1962) (see Sec. VII.B). We note
that this phase is entirely due to the torus topology of the
Brillouin zone, and it is the only way to realize a closed
path in a one-dimensional parameter space. By analyz-
ing the symmetry properties of Wannier functions (Kohn,
1959) of a one-dimensional crystal, Zak (1989a) showed
that γn is either 0 or π in the presence of inversion sym-
metry; a simple argument is given in Sec. II.C. If the crys-
tal lacks inversion symmetry, γn can assume any value.
Zak’s phase is also related to macroscopic polarization of
an insulator (King-Smith and Vanderbilt, 1993; Resta,
1994; Sipe and Zak, 1999) (see Sec. II.C).

II. ADIABATIC TRANSPORT AND ELECTRIC
POLARIZATION

One of the earlier examples of the Berry phase effect in
crystals is the adiabatic transport in a one-dimensional
band insulator, first considered by Thouless (1983). He
found that if the potential varies slowly in time and re-
turns to itself after some time, the particle transport dur-
ing the time cycle can be expressed as a Berry phase and
it is an integer. This idea was later generalized to many-
body systems with interactions and disorder, provided
that the Fermi energy always lies in a bulk energy gap
during the cycle (Niu and Thouless, 1984). Avron and
Seiler (1985) studied the adiabatic transport in multiply
connected systems. The scheme of adiabatic transport
under one or several controlling parameters has proven
very powerful. It opened the door to the field of paramet-
ric charge pumping (Brouwer, 1998; Niu, 1990; Switkes
et al., 1999; Talyanskii et al., 1997; Zhou et al., 1999). It
also provides a firm foundation to the modern theory of
polarization developed in the early 90’s (King-Smith and
Vanderbilt, 1993; Ortiz and Martin, 1994; Resta, 1994).

A. Adiabatic current

Let us consider a one-dimensional band insulator un-
der a slowly varying time-dependent perturbation. We
assume the perturbation is periodic in time, i.e., the
Hamiltonian satisfies

H(t+ T ) = H(t) . (2.1)

Since the time-dependent Hamiltonian still has the trans-
lational symmetry of the crystal, its instantaneous eigen-
states has the Bloch form eiqx|un(q, t)〉. It is convenient
to work with the q-space representation of the Hamilto-
nian H(q, t) [see Eq. (1.24)] with eigenstates |un(q, t)〉.
We note that under this parametrization, the wave vec-
tor q and time t are put on an equal footing as both are
independent cooridinates of the parameter space.

We are interested in the adiabatic current induced by
the variation of external potentials. Apart from an unim-
portant overall phase factor and up to first order in the
rate of the change of the Hamiltonian, the wave function
is given by (See Appendix A)

|un〉 − ih̄
∑
n′ 6=n

|un′〉〈un′ |∂un

∂t 〉
εn − εn′

. (2.2)

The velocity operator in the q-representaion has the form
v(q, t) = ∂H(q, t)/∂(h̄q). 6 Hence, the average velocity
in a state of given q is found to first order as

vn(q) =
∂εn(q)
h̄∂q

− i
∑
n′ 6=n

{ 〈un|∂H
∂q |un′〉〈un′ |∂un

∂t 〉
εn − εn′

− c.c.
}
,

(2.3)
where c.c. denotes the complex conjugate. Using the fact
that 〈un|∂H/∂q|un′〉 = (εn − εn′)〈∂un/∂q|un′〉 and the
identity

∑
n′ |un′〉〈un′ | = 1, we find

vn(q) =
∂εn(q)
h̄∂q

− i
[
〈∂un

∂q
|∂un

∂t
〉 − 〈∂un

∂t
|∂un

∂q
〉
]
. (2.4)

The second term is exactly the Berry curvature Ωn
qt de-

fined in the parameter space (q, t) [see Eq. (1.11)]. There-
fore the above equation can be recast into a compact form

vn(q) =
∂εn(q)
h̄∂q

− Ωn
qt . (2.5)

Upon integration over the Brillouin zone, the zeroth
order term given by the derivative of the band energy
vanishes, and only the first order term survives. The
induced adiabatic current is given by

j = −
∑

n

∫
BZ

dq

2π
Ωn

qt , (2.6)

6 The velocity operator is defined by v ≡ ṙ = i
h̄
[H, r]. In

the q-representation, it becomes v(q) = e−iq·r i
h̄
[r, H]eiq·r =

∂H(q, t)/∂(h̄q).
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A=(0,0) B=(1,0)

C=(1,1)D=(0,1)

x

y

(a) (b)

R(t)

q

FIG. 1 (a) A torus with its surface parameterized by (q, t).
The control parameter R(t) is periodic in t. (b) The equiv-
alence of a torus: a rectangle with periodic boundary condi-
tions: AB = DC and AD = BC. To make use of Stokes’s
theorem, we relax the boundary condition and allow the wave
functions on parallel sides to have different phases.

where the sum is over filled bands. We have thus de-
rived the remarkable result that the adiabatic current
induced by a time-dependent perturbation in a band is
equal to the q-integral of the Berry curvature Ωn

qt (Thou-
less, 1983).

B. Quantized adiabatic particle transport

Next we consider the particle transport for the nth
band over a time cycle, given by

cn = −
∫ T

0

dt

∫
BZ

dq

2π
Ωn

qt . (2.7)

Since the Hamiltonian H(q, t) is periodic in both t and q,
the parameter space of H(q, t) is a torus, schematically
shown in Fig. 1(a). By definition (1.12), 2πcn is nothing
but the Berry phase over the torus.

In Sec. I.C.3, we showed that the Berry phase over a
closed manifold, the surface of a sphere S2 in that case, is
quantized in the unit of 2π. Here we prove that it is also
true in the case of a torus. Our strategy is to evaluate
the surface integral (2.7) using Stokes’s theorem, which
requires the surface to be simply connected. To do that,
we cut the torus open and transform it into a rectangle, as
shown in Fig. 1(b). The basis function along the contour
of the rectangle is assumed to be single-valued. Introduce
x = t/T and y = q/2π. According to Eq. (1.10), the
Berry phase in Eq. (2.7) can be written into a contour

integral of the Berry vector potential, i.e.,

c =
1
2π

{∫ B

A

dxAx(x, 0) +
∫ C

B

dyAy(1, y)

+
∫ D

C

dxAx(x, 1) +
∫ A

D

dyAy(0, y)
}

=
1
2π

{∫ 1

0

dx [Ax(x, 0)−Ax(x, 1)]

−
∫ 1

0

dy [Ay(0, y)−Ay(1, y)]
}
,

(2.8)

where the band index n is dropped for simplicity. Let us
consider the integration over x. By definition, Ax(x, y) =
〈u(x, y)|i∇x|u(x, y)〉. Recall that |u(x, 0)〉 and |u(x, 1)〉
describe physically equivalent states, therefore they can
only differ by a phase factor, i.e., eiθx(x)|u(x, 1)〉 =
|u(x, 0)〉. We thus have∫ 1

0

dx [Ax(x, 0)−Ax(x, 1)] = θx(1)− θx(0) . (2.9)

Similarly,∫ 1

0

dy [Ay(0, y)−Ay(1, y)] = θy(1)− θy(0) , (2.10)

where eiθy(y)|u(y, 1)〉 = |u(y, 0)〉. The total integral is

c =
1
2π

[θx(1)− θx(0) + θy(0)− θy(1)] . (2.11)

On the other hand, using the phase matching relations
at the four corners A, B, C, and D,

eiθx(0)|u(0, 1)〉 = |u(0, 0)〉 ,
eiθx(1)|u(1, 1)〉 = |u(1, 0)〉 ,
eiθy(0)|u(1, 0)〉 = |u(0, 0)〉 ,
eiθy(1)|u(1, 1)〉 = |u(0, 1)〉 ,

we obtain

|u(0, 0)〉 = ei[θx(1)−θx(0)+θy(0)−θy(1)]|u(0, 0)〉 . (2.12)

The single-valuedness of |u〉 requires that the exponent
must be an integer multiple of 2π. Therefore the trans-
ported particle number c, given in Eq. (2.11), must be
quantized. This integer is called the first Chern number,
which characterizes the topological structure of the map-
ping from the parameter space (q, t) to the Bloch states
|u(q, t)〉. Note that in our proof, we made no reference
to the original physical system; the quantization of the
Chern number is always true as long as the Hamiltonian
is periodic in both parameters.

For a particular case in which the entire periodic po-
tential is sliding, an intuitive picture of the quantized
particle transport is the following. If the periodic poten-
tial slides its position without changing its shape, we ex-
pect that the electrons simply follow the potential. If the
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potential shifts one spatial period in the time cycle, the
particle transport should be equal to the number of filled
Bloch bands (double if the spin degeneracy is counted).
This follows from the fact that there is on average one
state per unit cell in each filled band.

1. Conditions for nonzero particle transport in cyclic motion

We have shown that the adiabatic particle transport
over a time period takes the form of the Chern number
and it is quantized. However, the exact quantization does
not gurantee that the electrons will be transported at the
end of the cycle because zero is also an integer. According
to the discussion in Sec. I.C.3, the Chern number counts
the net number of monopoles enclosed by the surface.
Therefore the number of transported electrons can be re-
lated to the number of monopoles, which are degeneracy
points in the parameter space.

To formulate this problem, we let the Hamiltonian de-
pend on time through a set of control parameters R(t),
i.e.,

H(q, t) = H(q,R(t)) , R(t+ T ) = R(t) . (2.13)

The particle transport is now given by, in terms of R,

cn =
1
2π

∮
dRα

∫
BZ

dqΩn
qRα

. (2.14)

If R(t) is a smooth function of t, as it is usually the case
for physical quantities, then R must have at least two
components, say R1 and R2. Otherwise the trajectory of
R(t) cannot trace out a circle on the torus [see Fig. 1(a)].
To find the monopoles inside the torus, we now relax the
constraint that R1 and R2 can only move on the surface
and extend their domains inside the torus such that the
parameter space of (q,R1, R2) becomes a toroid. Thus,
the criterion for cn to be nonzero is that a degeneracy
point must occur somewhere inside the torus as one varies
q, R1 and R2. In the context of quasi one-dimensional
ferroelectrics, Onoda et al. (2004b) have discussed the
situation where R has three components, and showed
how the topological structure in the R space affects the
particle transport.

2. Many-body interactions and disorder

In the above we have only considered band insulators
of non-interacting electrons. However, in real materi-
als both many-body interactions and disorder are ubiq-
uitous. Niu and Thouless (1984) studied this problem
and showed that in the general case the quantization of
particle transport is still valid as long as the system re-
mains an insulator during the whole process.

Let us consider a time-dependent Hamiltonian of an
N -particle system

H(t) =
N∑
i

[ p̂2
i

2m
+ U(xi, t)

]
+

N∑
i>j

V (xi − xj) , (2.15)

where the one-particle potential U(xi, t) varies slowly in
time and repeats itself in period T . Note that we have not
assumed any specific periodicity of the potential U(xi, t).
The trick is to use the so-called twisted boundary con-
dition by requiring that the many-body wave function
satisfies

Φ(x1, . . . , xi + L, . . . , xN ) = eiκLΦ(x1, . . . , xi, . . . , xN ) ,
(2.16)

where L is the size of the system. This is equivalent to
solving a κ-dependent Hamiltonian

H(κ, t) = exp(iκ
∑

xi)H(t) exp(−iκ
∑

xi) (2.17)

with the strict periodic boundary condition

Φ̃(κ;x1, . . . , xi +L, . . . , xN ) = Φ̃κ(κ;x1, . . . , xi, . . . , xN ) .
(2.18)

The Hamiltonian H(κ, t) together with the boundary
condition (2.18) describes a one-dimensional system
placed on a ring of length L and threaded by a magnetic
flux of (h̄/e)κL (Kohn, 1964). We note that the above
transformation (2.17) with the boundary condition (2.18)
is very similar to that of the one-particle case, given by
Eqs. (1.24) and (1.25).

One can verify that the current operator is given by
∂H(κ, t)/∂(h̄κ). For each κ, we can repeat the same
steps in Sec. II.A by identifying |un〉 in Eq. (2.2) as the
many-body ground-state |Φ̃0〉 and |un′〉 as the excited
state. We have

j(κ) =
∂ε(κ)
h̄∂κ

− i
[
〈∂Φ̃0

∂κ
|∂Φ̃0

∂t
〉 − 〈∂Φ̃0

∂t
|∂Φ̃0

∂κ
〉
]

=
∂ε(κ)
h̄∂κ

− Ω̃κt .

(2.19)

So far the derivation is formal and we still cannot see
why the particle transport should be quantized. The key
step is achieved by realizing that if the Fermi energy lies
in a gap, then the current j(κ) should be insensitive to
the boundary condition specified by κ (Niu and Thou-
less, 1984; Thouless, 1981). Consequently we can take
the thermodynamic limit and average j(κ) over differ-
ent boundary conditions. Note that κ and κ + 2π/L
describe the same boundary condition in Eq. (2.16).
Therefore the parameter space for κ and t is a torus
T 2 : {0 < κ < 2π/L, 0 < t < T}. The particle trans-
port is given by

c = − 1
2π

∫ T

0

dt

∫ 2π/L

0

dκ Ω̃κt , (2.20)

which, according to the previous discussion, is quantized.
We emphasize that the quantization of the particle

transport only depends on two conditions:

1. The ground state is separated from the excited
states in the bulk by a finite energy gap;

2. The ground state is non-degenerate.
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The exact quantization of the Chern number in the pres-
ence of many-body interactions and disorder is very re-
markable. Usually, small perturbations to the Hamilto-
nian result in small changes of physical quantities. How-
ever, the fact that the Chern number must be an integer
means that it can only be changed in a discontinous way
and does not change at all if the perturbation is small.
This is a general outcome of the topological invariance.

Later we show that the same quantity also appears in
the quantum Hall effect. The expression (2.19) of the
induced current also provides a many-body formulation
for adiabatic transport.

3. Adiabatic Pumping

The phenomenon of adiabatic transport is sometimes
called adiabatic pumping because it can generate a dc
current I via periodic variations of some parameters of
the system, i.e.,

I = ecν , (2.21)

where c is the Chern number and ν is the frequency of
the variation. Niu (1990) suggested that the exact quan-
tization of the adiabatic transport can be used as a stan-
dard for charge current and proposed an experimental
realization in nanodevices, which could serve as a charge
pump. It was later realized in the experimental study
of acoustoelectric current induced by a surface acoustic
wave in a one-dimensional channel in a GaAs-AlxGa1−x

heterostructure (Talyanskii et al., 1997). The same idea
has led to the proposal of a quantum spin pump in an
antiferromagentic chain (Shindou, 2005).

Recently, much effort has focused on adiabatic pump-
ing in mesoscopic systems (Avron et al., 2001, 2004;
Brouwer, 1998; Mucciolo et al., 2002; Sharma and Cha-
mon, 2001; Zheng et al., 2003; Zhou et al., 1999). Ex-
perimentally, both charge and spin pumping have been
observed in a quantum dot system (Switkes et al., 1999;
Watson et al., 2003). Instead of the wave function, the
central quantity in a mesoscopic system is the scattering
matrix. Brouwer (1998) showed that the pumped charge
over a time period is given by

Q(m) =
e

π

∫
A

dX1dX2

∑
β

∑
α∈m

=
∂S∗αβ

∂X1

∂Sαβ

∂X2
, (2.22)

where m labels the contact, X1 and X2 are two exter-
nal parameters whose trace encloses the area A in the
parameter space, α and β labels the conducting chan-
nels, and Sαβ is the scattering matrix. Although the
physical description of these open systems are dramati-
cally different from the closed ones, the concepts of gauge
field and geometric phase can still be applied. The inte-
grand in Eq. (2.22) can be thought as the Berry curvature
ΩX1X2 = −2=〈∂X1u|∂X2u〉 if we identify the inner prod-
uct of the state vector with the matrix product. Zhou

et al. (2003) showed the pumped charge (spin) is essen-
tially the Abelian (non-Abelian) geometric phase associ-
ated with scattering matrix Sαβ .

C. Electric Polarization of Crystalline Solids

Electric polarization is one of the fundamental quanti-
ties in condensed matter physics, essential to any proper
description of dielectric phenomena of matter. Despite
its great importance, the theory of polarization in crys-
tals had been plagued by the lack of a proper micro-
scopic understanding. The main difficulty lies in the
fact that in crystals the charge distribution is periodic in
space, for which the electric dipole operator is not well
defined. This difficulty is most exemplified in covalent
solids, where the electron charges are continuously dis-
tributed between atoms. In this case, simple integration
over charge density would give arbitrary values depend-
ing on the choice of the unit cell (Martin, 1972, 1974).
It has prompted the question whether the electric polar-
ization can be defined as a bulk property. These prob-
lems are eventually solved by the modern theory of polar-
ization (King-Smith and Vanderbilt, 1993; Resta, 1994),
where it is shown that only the change in polarization
has physical meaning and it can be quantified by using
the Berry phase of the electronic wave function. The
resulting Berry-phase formula has been very successful
in first-principles studies of dielectric and ferroelectric
materials. Resta and Vanderbilt (2007) reviewed recent
progress in this field.

Here we discuss the theory of polarization based on the
concept of adiabatic transport. Their relation is revealed
by elementary arguments from macroscopic electrostat-
ics (Ortiz and Martin, 1994). We begin with the relation

∇ · P (r) = −ρ(r) , (2.23)

where P (r) is the polarization density and ρ(r) is the
charge density. Coupled with the continuity equation

∂ρ(r)
∂t

+ ∇ · j = 0 , (2.24)

Eq. (2.23) leads to

∇ · (∂P

∂t
− j) = 0 . (2.25)

Therefore up to a divergence-free part, 7 the change in
the polarization density is given by

∆Pα =
∫ T

0

dt jα . (2.26)

7 The divergence-free part of the current is usually given by the
magnetization current. In a uniform system, such current van-
ishes identically in the bulk. Hirst (1997) gave an in-depth dis-
cussion on the separation between polarization and magnetiza-
tion current.
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The above equation can be interpreted in the following
way: The polarization difference between two states is
given by the integrated bulk current as the system adia-
batically evolves from the initial state at t = 0 to the final
state at t = T . This description implies a time-dependent
Hamiltonian H(t), and the electric polarization can be
regarded as “unquantized” adiabatic particle transport.
The above interpretation is also consistent with experi-
ments, as it is always the change of the polarization that
has been measured (Resta and Vanderbilt, 2007).

Obviously, the time t in the Hamiltonian can be re-
placed by any scalar that describes the adiabatic process.
For example, if the process corresponds to a deformation
of the crystal, then it makes sense to use the parame-
ter that characterizes the atomic displacement within a
unit cell. For general purpose, we shall assume the adi-
abatic transformation is parameterized by a scalar λ(t)
with λ(0) = 0 and λ(T ) = 1. It follows from Eqs. (2.6)
and (2.26) that

∆Pα = e
∑

n

∫ 1

0

dλ

∫
BZ

dq

(2π)d
Ωn

qαλ , (2.27)

where d is the dimensionality of the system. This is the
Berry-phase formula obtained by King-Smith and Van-
derbilt (1993).

In numerical calculations, a two-point version of
Eq. (2.27) that only involves the initial and final state
of the system is commonly used to reduce the computa-
tional load. It is obtained under the periodic gauge [see
Eq. (1.28)] 8. The Berry curvature Ωqαλ is wirtten as
∂qαAλ − ∂λAqα . Under the periodic gauge, Aλ is peri-
odic in qα, and integration of ∂qα

Aλ over qα vanishes.
Hence

∆Pα = e
∑∫

BZ

dq

(2π)d
An

qα

∣∣∣1
λ=0

. (2.28)

In view of Eq. (2.28), both the adiabatic transport and
the electric polarization can be regarded as the manifes-
tation of Zak’s phase, given in Eq. (1.29).

However, a price must be paid to use the two-point for-
mula, namely, the polarization in Eq. (2.28) is determined
up to an uncertainty quantum. Since the integral (2.28)
does not track the history of λ, there is no information on
how many cycles λ has gone through. According to our
discussion on quantized particle transport in Sec. II.B, for
each cycle an integer number of electrons are transported
across the sample, hence the polarization is changed by
multiple of the quantum

ea

V0
, (2.29)

8 A more general phase choice is given by the path-independent
gauge |un(q, λ)〉 = ei[θ(q)+G·r]|un(q + G, λ)〉, where θ(q) is an
arbitrary phase (Ortiz and Martin, 1994)

where a is the Bravais lattice vector and V0 is the volume
of the unit cell.

Because of this uncertainty quantum, the polarization
may be regarded as a multi-valued quantity with each
value differed by the quantum. With this in mind, let us
consider Zak’s phase in a one-dimensional system with
inversion symmetry. Now we know that Zak’s phase is
just 2π/e times the polarization density P . Under spa-
tial inversion, P transforms to −P . On the other hand,
inversion symmetry requires that P and −P describes
the same state, which is only possible if P and −P differ
by multiple of the polarization quantum ea. Therefore
P is either 0 or ea/2 (modulo ea). Any other value of P
will break the inversion symmetry. Consequently, Zak’s
phase can only take the value 0 or π (modulo 2π).

King-Smith and Vanderbilt (1993) further showed
that, based on Eq. (2.28), the polarization per unit cell
can be defined as the dipole moment of the Wannier
charge density,

P = −e
∑

n

∫
dr r|Wn(r)|2 , (2.30)

where Wn(r) is the Wannier function of the nth band,

Wn(r −R) =
√
NV0

∫
BZ

dq

(2π)3
eiq·(r−R)unk(r) . (2.31)

In this definition, one effectively maps a band insulator
into a periodic array of localized distributions with truly
quantized charges. This resembles an ideal ionic crystal
where the polarization can be understood in the classical
picture of localized charges. The quantum uncertainty
found in Eq. (2.29) is reflected by the fact that the Wan-
nier center position is defined only up to a lattice vector.

Before concluding, we point out that the polarization
defined above is clearly a bulk quantity as it is given
by the Berry phase of the ground state wave function.
A many-body formulation was developed by Ortiz and
Martin (1994) based on the work of Niu and Thouless
(1984).

Recent development in this field falls into two cate-
gories. On the computational side, calculating polariza-
tion in finite electric fields has been addressed, which has
a deep influence on density functional theory in extended
systems (Nunes and Gonze, 2001; Nunes and Vander-
bilt, 1994; Souza et al., 2002). On the theory side, Resta
(1998) proposed a quantum-mechanical position operator
for extended systems. It was shown that the expectation
value of such an operator can be used to characterize
the phase transition between the metallic and insulating
state (Resta and Sorella, 1999; Souza et al., 2000), and
is closely related to the phenomenon of electron localiza-
tion (Kohn, 1964).

1. The Rice-Mele model

So far our discussion of the adiabatic transport and
electric polarization has been rather abstract. We now



13

consider a concrete example: a one-dimensional dimer-
ized lattice model described by the following Hamiltonian

H =
∑

j

(
t

2
+ (−1)j δ

2
)(c†jcj+1 + h.c.) + ∆(−1)jc†jcj ,

(2.32)
where t is the uniform hopping amplitude, δ is the dimer-
ization order, and ∆ is a staggered sublattice poten-
tial. It is the prototype Hamiltonian for a class of one-
dimensional ferroelectrics. At half-filling, the system is a
metal for ∆ = δ = 0, and an insulator otherwise. Rice
and Mele (1982) considered this model in the study of
solitons in polyenes. It was later used to study ferroelec-
tricity (Onoda et al., 2004b; Vanderbilt and King-Smith,
1993). If ∆ = 0 it reduces to the celebrated Su-Shrieffer-
Heeger model (Su et al., 1979).

Assuming periodic boundary condition, the Bloch rep-
resentation of the above Hamiltonian is given by H(q) =
h(q) · σ, where

h = (t cos
qa

2
,−δ sin

qa

2
,∆) . (2.33)

This is the two-level model we discussed in Sec. I.C.3. Its
energy spectrum consists of two bands with eigenenergies
ε± = ±(∆2 + δ2 sin2 qa

2 + t2 cos2 qa
2 )1/2. The degeneracy

point occurs at

∆ = 0 , δ = 0 , q = π/a . (2.34)

The polarization is calculated using the two-point for-
mula (2.28) with the Berry connection given by

Aq = ∂qφAφ + ∂qθAθ = sin2 θ

2
∂qφ , (2.35)

where θ and φ are the spherical angles of h.
Let us consider the case of ∆ = 0. In the parameter

space of h, it lies in the xy-plane with θ = π/2. As q
varies from 0 to 2π/a, φ changes from 0 to π if δ < 0
and 0 to −π if δ > 0. Therefore the polarization differ-
ence between P (δ) and P (−δ) is ea/2. This is consistent
with the observation that the state with P (−δ) can be
obtained by shifting the state with P (δ) by half of the
unit cell length a.

Figure 2 shows the calculated polarization for arbi-
trary ∆ and δ. As we can see, if the system adiabatically
evolves along a loop enclosing the degeneracy point (0, 0)
in the (∆, δ) space, then the polarization will be changed
by ea, which means that if we allow (∆, δ) to change in
time along this loop, for example, ∆(t) = ∆0 sin(t) and
δ(t) = δ0 cos(t), a quantized charge of e is pumped out of
the system after one cycle. On the other hand, if the loop
does not contain the degeneracy point, then the pumped
charge is zero.

III. ELECTRON DYNAMICS IN AN ELECTRIC FIELD

The dynamics of Bloch electrons under the perturba-
tion of an electric field is one of the oldest problems in

-0.5

0.5

0

FIG. 2 (color online). Polarization as a function of ∆ and δ in
the Rice-Mele model. The unit is ea with a being the lattice
constant. The line of discontinuity can be chosen anywhere
depending on the particular phase choice of the eigenstate.

solid state physics. It is usually understood that while
the electric field can drive electron motion in momentum
space, it does not appear in the electron velocity; the
latter is simply given by (for example, see Chapter 12 of
Ashcroft and Mermin, 1976b)

vn(q) =
∂εn(q)
h̄∂q

. (3.1)

Through recent progress on the semiclassical dynamics of
Bloch electrons, it has been made increasingly clear that
this description is incomplete. In the presence of an elec-
tric field, an electron can acquire an anomalous velocity
proportional to the Berry curvature of the band (Chang
and Niu, 1995, 1996; Sundaram and Niu, 1999). This
anomalous velocity is responsible for a number of trans-
port phenomena, in particular various Hall effects, which
we study in this section.

A. Anomalous velocity

Let us consider a crystal under the perturbation of a
weak electric field E, which enters into the Hamiltonian
through the coupling to the electrostatic potential φ(r).
However, a uniform E means that φ(r) varies linearly
in space and breaks the translational symmetry of the
crystal so that Bloch’s theorem cannot be applied. To go
around this difficulty, one can let the electric field enter
through a uniform vector potential A(t) that changes in
time. Using the Peierls substitution, the Hamiltonian is
written as

H(t) =
[p̂ + eA(t)]2

2m
+ V (r) . (3.2)

This is the time-dependent problem we have studied in
last section. Transforming to the q-space representation,
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we have

H(q, t) = H(q +
e

h̄
A(t)) . (3.3)

Introduce the gauge-invariant crystal momentum

k = q +
e

h̄
A(t) . (3.4)

The parameter-dependent Hamiltonian can be simply
written as H(k(q, t)). Hence the eigenstates of the time-
dependent Hamiltonian can be labeled by a single pa-
rameter k. Moreover, because A(t) preserves the transla-
tional symmetry, q is still a good quantum number and is
a constant of motion q̇ = 0. It then follows from Eq. (3.4)
that k satisfies the following equation of motion

k̇ = − e
h̄

E . (3.5)

Using the relation ∂/∂qα = ∂/∂kα and ∂/∂t =
−(e/h̄)Eα∂/∂kα, the general formula (2.5) for the ve-
locity in a given state k becomes

vn(k) =
∂εn(k)
h̄∂k

− e

h̄
E ×Ωn(k) , (3.6)

where Ωn(k) is the Berry curvature of the nth band:

Ωn(k) = i〈∇kun(k)| × |∇kun(k)〉 . (3.7)

We can see that, in addition to the usual band disper-
sion contribution, an extra term previously known as
an anomalous velocity also contributes to vn(k). This
velocity is always transverse to the electric field, which
will give rise to a Hall current. Historically, the anoma-
lous velocity has been obtained by Adams and Blount
(1959); Karplus and Luttinger (1954); Kohn and Lut-
tinger (1957); its relation to the Berry phase was realized
much later. In Sec. V we shall rederive this term using a
wavepacket approach.

B. Berry curvature: Symmetry considerations

The velocity formula (3.6) reveals that, in addition
to the band energy, the Berry curvature of the Bloch
bands is also required for a complete description of the
electron dynamics. However, the conventional formula,
Eq. (3.1), has had great success in describing various elec-
tronic properties in the past. It is thus important to know
under what conditions the Berry curvature term cannot
be neglected.

The general form of the Berry curvature Ωn(k) can
be obtained via symmetry analysis. The velocity for-
mula (3.6) should be invariant under time reversal and
spatial inversion operations if the unperturbed system
has these symmetries. Under time reversal, vn and k
change sign while E is fixed. Under spatial inversion,
vn, k, and E change sign. If the system has time re-
versal symmetry, the symmetry condition on Eq. (3.6)
requires that

Ωn(−k) = −Ωn(k) . (3.8)
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FIG. 3 (color online). Fermi surface in (010) plane (solid
lines) and the integrated Berry curvature −Ωz(k) in atomic
units (color map) of fcc Fe. From Yao et al., 2004.

If the system has spatial inversion symmetry, then

Ωn(−k) = Ωn(k) . (3.9)

Therefore, for crystals with simultaneous time-reversal
and spatial inversion symmetry the Berry curvature van-
ish identically throughout the Brillouin zone. In this case
Eq. (3.6) reduces to the simple expression (3.1). However,
in systems with either broken time-reversal or inversion
symmetries, their proper description requires the use of
the full velocity formula (3.6).

There are many important physical systems where
both symmetries are not simultaneously present. For
example, in the presence of ferro- or antiferro-magnetic
ordering the crystal breaks the time-reversal symmetry.
Figure 3 shows the Berry curvature on the Fermi surface
of fcc Fe. As we can see, the Berry curvature is negligi-
ble in most areas in the momentum space and displays
very sharp and pronounced peaks in regions where the
Fermi lines (intersection of the Fermi surface with (010)
plane) have avoided crossings due to spin-orbit coupling.
Such a structure has been identified in other materials as
well (Fang et al., 2003). Another example is provided by
single-layered graphene sheet with staggered sublattice
potential, which breaks inversion symmetry (Zhou et al.,
2007). Figure 4 shows the energy band and Berry cur-
vature of this system. The Berry curvature at valley K1

and K2 have opposite signs due to time-reversal symme-
try. We note that as the gap approaches zero, the Berry
phase acquired by an electron during one circle around
the valley becomes exactly ±π. This Berry phase of π
has been observed in intrinsic graphene sheet (Novoselov
et al., 2005; Zhang et al., 2005).
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FIG. 4 (color online). Energy bands (top panel) and
Berry curvature of the conduction band (bottom panel) of
a graphene sheet with broken inversion symmetry. The first
Brillouin zone is outlined by the dashed lines, and two inequiv-
alent valleys are labeled as K1 and K2. Details are presented
in Xiao et al., 2007b.

C. The quantum Hall effect

The quantum Hall effect was discovered by Klitzing
et al. (1980). They found that in a strong magnetic field
the Hall conductivity of a two-dimensional electron gas is
exactly quantized in the units of e2/h. The exact quan-
tization was subsequently explained by Laughlin (1981)
based on gauge invariance, and was later related to a
topological invariance of the energy bands (Avron et al.,
1983; Niu et al., 1985; Thouless et al., 1982). Since then
it has blossomed into an important research field in con-
densed matter physics. In this subsection we shall focus
only on the quantization aspect of the quantum Hall ef-
fect using the formulation developed so far.

Let us consider a two-dimensional band insulator. It
follows from Eq. (3.6) that the Hall conductivity of the
system is given by

σxy =
e2

h̄

∫
BZ

d2k

(2π)2
Ωkxky

, (3.10)

where the integration is over the entire Brillouin. Once
again we encounter the situation where the Berry curva-
ture is integrated over a closed manifold. Here σxy is just
the Chern number in the units of e2/h, i.e.,

σxy = n
e2

h
. (3.11)

Therefore the Hall conductivity is quantized for a two-
dimensional band insulator of non-interacting electrons.

Historically, the quantization of the Hall conductivity
in a crystal was first shown by Thouless et al. (1982) for
magnetic Bloch bands (see also Sec. VIII. It was shown
that, due to the magnetic translational symmetry, the

phase of the wave function in the magnetic Brillouin zone
carries a vortex and leads to a nonzero quantized Hall
conductivity (Kohmoto, 1985). However, it is clear from
the above derivation that for the quantum Hall effect to
occur the only condition is that the Chern number of
the bands must be nonzero. It is possible that in some
materials the Chern number can be nonzero even in the
absence of an external magnetic field. Haldane (1988)
constructed a tight-binding model on a honeycomb lat-
tice which displays the quantum Hall effect with zero net
flux per unit cell. Another model is proposed for semi-
conductor quantum well where the spin-orbit interaction
plays the role of the magnetic field (Liu et al., 2008; Qi
et al., 2006) and leads to a quantized Hall conductance.
The possibility of realizing the quantum Hall effect with-
out a magnetic field is very attractive in device design.

Niu et al. (1985) further showed that the quantized
Hall conductivity in two-dimensions is robust against
many-body interactions and disorder (See also (Avron
and Seiler, 1985)). Their derivation involves the same
technique discussed in Sec. II.B.2. A two-dimensional
many-body system is placed on a torus by assuming pe-
riodic boundary conditions in both directions. One can
then thread the torus with magnetic flux through its
holes (Fig. 5) and make the Hamiltonian H(φ1, φ2) de-
pend on the flux φ1 and φ2. The Hall conductivity is
calculated using the Kubo formula

σH = ie2h̄
∑
n>0

〈Φ0|v1|Φn〉〈Φn|v2|Φ0〉 − (1 ↔ 2)
(ε0 − εn)2

,

(3.12)
where Φn is the many-body wave function with |Φ0〉 the
ground state. In the presence of the flux, the veloc-
ity operator is given by vi = ∂H(κ1, κ2)/∂(h̄κi) with
κi = (e/h̄)φi/Li and Li the dimensions of the sys-
tem. We recognize that Eq. (3.12) is the summation for-
mula (1.13) for the Berry curvature Ωκ1κ2 of the state
|Φ0〉. The existence of a bulk energy gap guarantees that
the Hall conductivity remains unchanged after thermo-
dynamic averaging, which is given by

σH =
e2

h̄

∫ 2π/L1

0

dκ1

∫ 2π/L2

0

dκ2 Ωκ1κ2 . (3.13)

Note that the Hamiltonian H(κ1, κ2) is periodic in κi

with period 2π/Li because the system returns to its orig-
inal state after the flux is changed by a flux quantum h/e
(and κi changed by 2π/Li). Therefore the Hall conduc-
tivity is quantized even in the presence of many-body
interaction and disorder. Due to the high precision of
the measurement and the robustness of the quantization,
the quantum Hall resistance is now used as the primary
standard of resistance.

The geometric and topological ideas developed in the
study of the quantum Hall effect has a far-reaching im-
pact on modern condensed matter physics. The robust-
ness of the Hall conductivity suggests that it can be used
as a topological invariance to classify many-body phases
of electronic states with a bulk energy gap (Avron et al.,
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FIG. 5 Magnetic flux going through the holes of the torus.

1983): states with different topological orders (Hall con-
ductivities in the quantum Hall effect) cannot be adia-
batically transformed into each other; if that happens, a
phase transition must occur. It has important applica-
tions in strongly correlated electron systems, such as the
fractional quantum Hall effect (Wen and Niu, 1990), and
most recently, the topological quantum computing (for a
review, see Nayak et al., 2008).

D. The anomalous Hall Effect

Next we discuss the anomalous Hall effect, which refers
to the appearance of a large spontaneous Hall current in
a ferromagnet in response to an electric field alone (For
early works in this field see Chien and Westgate, 1980).
Despite its century-long history and importance in sam-
ple characterization, the microscopic mechanism of the
anomalous Hall effect has been a controversial subject
and it comes to light only recently (for a recent review
see Nagaosa et al., 2010). In the past, three mechanisms
have been identified: the intrinsic contribution (Karplus
and Luttinger, 1954; Luttinger, 1958), and the extrinsic
contributions from the skew (Smit, 1958) and side-jump
scattering (Berger, 1970). The latter two describe the
asymmetric scattering amplitudes for spin-up and spin-
down electrons. It was later realized that the scattering-
independent intrinsic contribution comes from the Berry-
phase supported anomalous velocity. It will be our pri-
mary interest here.

The intrinsic contribution to the anomalous Hall ef-
fect can be regarded as an “unquantized” version of the
quantum Hall effect. The Hall conductivity is given by

σxy =
e2

h̄

∫
dk

(2π)d
f(εk)Ωkxky

, (3.14)

where f(εk) is the Fermi-Dirac distribution function.
However, unlike the quantum Hall effect, the anomalous
Hall effect does not require a nonzero Chern number of
the band; for a band with zero Chern number, the local
Berry curvature can be nonzero and give rise to a nonzero
anomalous Hall conductivity.

Let us consider a generic Hamiltonian with spin-orbit
(SO) split bands (Onoda et al., 2006b)

H =
h̄2k2

2m
+ λ(k × σ) · ez −∆σz . (3.15)

where 2∆ is the SO split gap in the energy spectrum ε± =
h̄2k2/2m ±

√
λ2k2 + ∆2, and λ gives a linear dispersion

in the absence of ∆. This model also describes spin-
polarized two-dimensional electron gas with Rashba SO
coupling, with λ being the SO coupling strength and ∆
the exchange field (Culcer et al., 2003). Obviously the
∆ term breaks time-reversal symmetry and the system
is ferromagnetic. However, the ∆-term alone will not
lead to a Hall current as it only breaks the time-reversal
symmetry in the spin space. The SO interaction is needed
to couple the spin and orbital part together. The Berry
curvature is given by, using Eq. (1.19),

Ω± = ∓ λ2∆
2(λ2k2 + ∆2)3/2

. (3.16)

The Berry curvatures of the two energy bands have oppo-
site sign, and is highly concentrated around the gap (In
fact, the Berry curvature has the same form of the Berry
curvature in one valley of the graphene, shown in Fig. 4).
One can verify that the integration of the Berry curva-
ture of a full band, 2π

∫∞
0
qdqΩ±, is ±π for the upper

and lower bands, respectively. 9

Figure 6 shows the band dispersion, and the intrin-
sic Hall conductivity, Eq. (3.14), as the Fermi energy
sweeps across the SO split gap. As we can see, when
the Fermi energy εF is in the gap region, the Hall con-
ductivity reaches its maximum value (about −e2/2h). If
εF < −∆, the states with energies just below −∆, which
contribute most to the Hall conductivity, are empty. If
εF > ∆, contributions from upper and lower bands cancel
each other, and the Hall conductivity decreases quickly
as εF moves away from the band gap. It is only when
−∆ < εF < ∆, the Hall conductivity is resonantly en-
hanced (Onoda et al., 2006b).

1. Intrinsic vs. extrinsic contributions

The above discussion does not take into account the
fact that, unlike insulators, in metallic systems electron
scattering can be important in transport phenomena.
Two contributions to the anomalous Hall effect arises
due to scattering: (i) the skew scattering that refers to
the asymmetric scattering amplitude with respect to the
scattering angle between the incoming and outgoing elec-
tron waves (Smit, 1958), and (ii) the side jump which is

9 Since the integration is perfomed in an infinite momentum space,
the result is not quantized in the unit of 2π.
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FIG. 6 (a) Energy dispersion of spin-split bands. (b) The
Hall conductivity −σxy in the units of e2/h as a function of
Fermi energy.

a sudden shift of the electron coordinates during scat-
tering (Berger, 1970). In a more careful analysis, a sys-
tematic study of the anomalous Hall effect based on the
semiclassical Boltzmann transport theory has been car-
ried out (Sinitsyn, 2008). The basic idea is to solve the
following Boltzmann equation:

∂gk

∂t
− eE · ∂ε

h̄∂k

∂f

∂ε

=
∑
k′

ωkk′

[
gk − gk′ − ∂f

∂ε
eE · δrkk′

]
,

(3.17)

where g is the non-equilibrium distribution function, ωkk′

represents the asymmetric skew scattering, and δrkk′ de-
scribes the side-jump of the scattered electrons. The Hall
conductivity is the sum of different contributions

σH = σin
H + σsk

H + σsj
H , (3.18)

where σin
H is the intrinsic contribution given by Eq. (3.14),

σsk
H is the skew scattering contribution, which is propor-

tional to the relaxation time τ , and σsj
H is the side jump

contribution, which is independent of τ . Note that in
addition to Berger’s original proposal, σsj

H also includes
two other contributions: the intrinsic skew-scattering and
anomalous distribution function (Sinitsyn, 2008).

An important question is to identify the dominant con-
tribution to the AHE among these mechanisms. If the
sample is clean and the temperature is low, the relax-
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FIG. 7 (color online) σah vs. σxx(T )2 in Fe thin films with
different film thickness over the temperature range 5-300 K.
From Tian et al..

ation time τ can be extremely large, and the skew scat-
tering is expected to dominate. On the other hand, in
dirty samples and at high temperatures, σsk

H becomes
small compared to both σin

H and σsj
H . Because the Berry-

phase contribution σin
H is independent of scattering, it

can be readily evaluated using first-principles methods or
effective Hamiltonians. Excellent agreement with experi-
ments has been demonstrated in ferromagnetic transition
metals and semiconductors (Fang et al., 2003; Jungwirth
et al., 2002; Xiao et al., 2006b; Yao et al., 2004, 2007),
which leaves little room for the side jump contribution.

In addition, a number of experimental results also gave
favorable evidence for the dominance of the intrinsic con-
tribution (Chun et al., 2007; Lee et al., 2004b; Mathieu
et al., 2004; Sales et al., 2006; Zeng et al., 2006). In par-
ticular, Tian et al. recently measured the anomalous Hall
conductivity in Fe thin films. By varying the film thick-
ness and the temperature, they are able to control various
scattering process such as the impurity scattering and
the phonon scattering. Figure 7 shows their measured
σah as a function of σxx(T )2. We can see that although
σah in different thin films and at different temperatures
shows a large variation at finite σxx, they converge to a
single point as σxx approaches zero, where the impurity-
scattering induced contribution should be washed out by
the phonon scattering and only the intrinsic contribution
survives. It turns out that this converged value is very
close to the bulk σah of Fe, which confirms the dominance
of the intrinsic contribution in Fe.

In addition to the semiclassical approach (Sinitsyn,
2008; Sinitsyn et al., 2005), there are a number of works
based on a full quantum mechanical approach (Dugaev
et al., 2005; Inoue et al., 2006; Kato et al., 2007; Nozières
and Lewiner, 1973; Onoda and Nagaosa, 2002; Onoda
et al., 2006b, 2008; Sinitsyn et al., 2007). In both ap-
proaches, the Berry-phase supported intrinsic contribu-
tion to the anomalous Hall effect has been firmly estab-
lished.
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2. Anomalous Hall conductivity as a Fermi surface property

An interesting aspect of the intrinsic contribution to
the anomalous Hall effect is that the Hall conductivity,
Eq. (3.14), is given as an integration over all occupied
states below the Fermi energy. It seems to be against the
spirit of the Landau Fermi liquid theory, which states
that the transport property of an electron system is de-
termined by quasiparticles at the Fermi energy. This
issue was first raised by Haldane (2004), and he showed
that the Hall conductivity can be written, in the units of
e2/2πh, as the Berry phase of quasiparticles on the Fermi
surface, up to a multiple of 2π. Therefore the intrinsic
Hall conductivity is also a Fermi surface property. This
observation suggests that the Berry phase on the Fermi
surface should be added as a topological ingredient to the
Landau Fermi liquid theory.

For simplicity, let us consider a two-dimensional sys-
tem. We assume there is only one partially filled band.
Write the Berry curvature in terms of the Berry vector
potential and integrate Eq. (3.14) by part; one finds

σ2D
xy =

e2

h̄

∫
d2k

2π
(
∂f

∂ky
Akx −

∂f

∂kx
Aky ) , (3.19)

Note that the Fermi distribution function f is a step func-
tion at the Fermi energy. If we assume the Fermi surface
is a closed loop in the Brillouin zone, then

σ2D
xy =

e2

2πh

∮
dk ·Ak . (3.20)

The integral is nothing but the Berry phase along the
Fermi circle in the Brillouin zone. The three-dimensional
case is more complicated; Haldane (2004) showed that
the same conclusion can be reached.

Wang et al. (2007) has implemented Haldane’s idea in
first-principles calculations of the anomalous Hall con-
ductivity. From a computational point of view, the ad-
vantage lies in that the integral over the Fermi sea is con-
verted to a more efficient integral on the Fermi surface.
On the theory side, Shindou and Balents (2006, 2008)
derived an effective Boltzmann equation for quasiparti-
cles on the Fermi surface using the Keldysh formalism,
where the Berry phase of the Fermi surface is defined in
terms of the quasiparticle Green functions, which nicely
fits into the Landau Fermi liquid theory.

E. The valley Hall effect

A necessary condition for the charge Hall effect to man-
ifest is the broken time-reversal symmetry of the system.
In this subsection we discuss another type of Hall effect
which relies on inversion symmetry breaking, and sur-
vives in time-reversal invariant systems.

We shall use graphene as our prototype system. The
band structure of intrinsic graphene has two degener-
ate and inequivalent Dirac points at the corners of the

Brillouin zone, where the conduction and valance bands
touch each other, forming a valley structure. Because
of their large separation in momentum space, the inter-
valley scattering is strongly suppressed (Gorbachev et al.,
2007; Morozov et al., 2006; Morpurgo and Guinea, 2006),
which makes the valley index a good quantum number.
Interesting valley-dependent phenomena, which concerns
about the detection and generation of valley polarization,
are being actively explored (Akhmerov and Beenakker,
2007; Rycerz et al., 2007; Xiao et al., 2007b; Yao et al.,
2008).

The system we are interested in is graphene with bro-
ken inversion symmetry. Zhou et al. (2007) have recently
reported the observation of a band gap opening in epi-
taxial graphene, attributed to the inversion symmetry
breaking by the substrate potential. In addition, in bi-
ased graphene bilayer, inversion symmetry can be explic-
itly broken by the applied interlayer voltage (McCann
and Fal’ko, 2006; Min et al., 2007; Ohta et al., 2006). It
is this broken inversion symmetry that allows a valley
Hall effect. Introducing the valley index τz = ±1 which
labels the two valleys, we can write the valley Hall effect
as

jv = σv
H ẑ ×E , (3.21)

where σv
H is the valley Hall conductivity, and the valley

current jv = 〈τzv〉 is defined as the average of the val-
ley index τz times the velocity operator v. Under time
reversal, both the valley current and electric field are in-
variant (τz changes sign because the two valleys switch
when the crystal momentum changes sign). Under spa-
tial inversion, the valley current is still invariant but the
electric field changes sign. Therefore, the valley Hall con-
ductivity can be nonzero when the inversion symmetry
is broken, even if time reversal symmetry remains.

In the tight-binding approximation, the Hamiltonian of
a single graphene sheet can be modeled with a nearest-
neighbor hopping energy t and a site energy difference ∆
between sublattices. For relatively low doping, we can re-
sort to the low-energy description near the Dirac points.
The Hamiltonian is given by (Semenoff, 1984)

H =
√

3
2
at(qxτzσx + qyσy) +

∆
2
σz , (3.22)

where σ is the Pauli matrix accounting for the sublattice
index, and q is measured from the valley center K1,2 =
(±4π/3a)x̂ with a being the lattice constant. The Berry
curvature of the conduction band is given by

Ω(q) = τz
3a2t2∆

2(∆2 + 3q2a2t2)3/2
. (3.23)

Note that the Berry curvatures in two valleys have oppo-
site sign, as required by time-reversal symmetry. The en-
ergy spectrum and the Berry curvature are already shown
in Fig. 4. Once the structure of the Berry curvature is re-
vealed, the valley Hall effect becomes transparent: upon
the application of an electric field, electrons in different
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valleys will flow to opposite directions transverse to the
electric field, giving rise to a net valley Hall current in
the bulk.

We remark that as ∆ goes to zero, the Berry curvature
vanishes everywhere except at the Dirac points where it
diverges. Meanwhile, The Berry phase around the Dirac
points becomes exactly ±π (also see Sec. VII.C).

As we can see, the valley transport in systems with bro-
ken inversion symmetry is a very general phenomenon. It
provides a new and standard pathway to potential appli-
cations of valleytronics, or valley-based electronic appli-
cations, in a broad class of semiconductors (Gunawan
et al., 2006; Xiao et al., 2007b; Yao et al., 2008).

IV. WAVEPACKET: CONSTRUCTION AND
PROPERTIES

So far, our discussion has focused on crystals under
time-dependent perturbations, and we have shown that
the Berry phase will manifest itself as an anomalous term
in the electron velocity. However, in general situations
the electron dynamics can be also driven by perturba-
tions that vary in space. In this case, the most useful de-
scription is provided by the semiclassical theory of Bloch
electron dynamics, which describes the motion of a nar-
row wavepacket obtained by superposing the Bloch states
of a band (see, for example, Chap. 12 of Ashcroft and
Mermin, 1976b). The current and next sections are de-
voted to the study of the wavepacket dynamics, where
the Berry curvature naturally appears in the equations
of motion.

In this section we discuss the construction and the
general properties of the wavepacket. Two quantities
emerges in the wavepacket approach, i.e., the orbital
magnetic moment of the wavepacket and the dipole mo-
ment of a physical observable. For their applications,
we consider the problems of orbital magnetization and
anomalous thermoelectric transport in ferromagnets.

A. Construction of the wavepacket and its orbital moment

We assume the perturbations are sufficiently weak that
transitions between different bands can be neglected. i.e.,
the electron dynamics is confined within a single band.
Under this assumption, we construct a wavepacket using
the Bloch functions |ψn(q)〉 from the nth band:

|W0〉 =
∫
dqw(q, t)|ψn(q)〉 . (4.1)

There are two requirements on the envelope function
w(q, t). Firstly, w(q, t) must have a sharp distribution
in the Brillouin zone such that it makes sense to speak
of the wave vector qc of the wavepacket, given by

qc =
∫
dq q|w(q, t)|2 . (4.2)

To first order, |w(q, t)|2 can be approximated by δ(q−qc)
and one has ∫

dq f(q)|w(q, t)|2 ≈ f(qc) , (4.3)

where f(q) is an arbitrary function of q. Equation (4.3) is
very useful in evaluating various quantities related to the
wavepacket. Secondly, the wavepacket has to be narrowly
localized around its center of mass, denoted by rc, in the
real space, i.e.,

rc = 〈W0|r|W0〉 . (4.4)

Using Eq. (4.3) we obtain

rc = − ∂

∂qc
argw(qc, t) + An

q(qc) , (4.5)

where An
q = i〈un(q)|∇q|un(q)〉 is the Berry connection

of the nth band defined using |un(q)〉 = e−ik·r|ψn(q)〉. A
more rigorous consideration of the wavepacket construc-
tion is given by Hagedorn (1980).

In principle, more dynamical variables, such as the
width of the wavepacket in both the real space and mo-
mentum space, can be added to allow a more elaborate
description of the time evolution of the wavepacket. How-
ever, in short period the dynamics is dominated by the
motion of the wavepacket center, and Eqs. (4.2) and (4.5)
are sufficient requirements.

When more than one band come close to each other, or
even become degenerate, the single-band approximation
breaks down and the wavepacket must be constructed
using Bloch functions from multiple bands. Culcer et al.
(2005); Shindou and Imura (2005) developed the multi-
band formalism for electron dynamics, which will be pre-
sented in Sec. IX. For now, we will focus on the single-
band formulation and drop the band index n for simple
notation.

The wavepacket, unlike a classical point particle, has a
finite spread in real space. In fact, since it is constructed
using an incomplete basis of the Bloch functions, the size
of the wavepacket has a nonzero lower bound (Marzari
and Vanderbilt, 1997). Therefore, a wavepacket may pos-
sess a self-rotation around its center of mass, which will
in turn give rise to an orbital magnetic moment. By cal-
culating the angular momentum of a wavepacket directly,
one finds (Chang and Niu, 1996)

m(q) = −e
2
〈W0|(r − rc)× j|W0〉

= −i e
2h̄
〈∇qu| × [H(q)− ε(q)]|∇qu〉 ,

(4.6)

where H(q) = e−iq·rHeiq·r is the q-dependent Hamilto-
nian. Equation (4.3) is used to obtain this result. This
shows that the wavepacket of a Bloch electron generally
rotates around its mass center and carries an orbital mag-
netic moment in addition to its spin moment.

We emphasize that the orbital moment is an intrin-
sic property of the band. Its final expression, Eq. (4.6),
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does not depend on the actual shape and size of the
wavepacket, and only depends on the Bloch functions.
Under symmetry operations, the orbital moment trans-
forms exactly like the Berry curvature. Therefore unless
the system has both time-reversal and inversion symme-
try, m(q) is in general nonzero. Information of the or-
bital moment can be obtained by measuring magnetic cir-
cular dichroism (MCD) spectrum of a crystal (Souza and
Vanderbilt, 2008; Yao et al., 2008). In the single-band
case, MCD directly measures the magnetic moment.

This orbital moment behaves exactly like the elec-
tron spin. For example, upon the application of a mag-
netic field, the orbital moment will couple to the field
through a Zeeman-like term −m(q) ·B. If one construct
a wavepacket using only the positive energy states (the
electron branch) of the Dirac Hamiltonian, its orbital mo-
ment in the non-relativistic limit is exactly the Bohr mag-
neton (Sec. IX). For Bloch electrons, the orbital moment
can be related to the electron g-factor (Yafet, 1963). Let
us consider a specific example. For the graphene model
with broken-inversion symmetry, discussed in Sec. III.E,
the orbital moment of the conduction band is given
by (Xiao et al., 2007b)

m(τz, q) = τz
3ea2∆t2

4h̄(∆2 + 3q2a2t2)
. (4.7)

So orbital moments in different valleys have opposite
signs, as required by time-reversal symmetry. Interest-
ingly, the orbital moment at exactly the band bottom
takes the following form

m(τz) = τzµ
∗
B , µ∗B =

eh̄

2m∗ , (4.8)

where m∗ is the effective mass at the band bottom. The
close analogy with the Bohr magneton for the electron
spin is transparent. In realistic situations, the moment
can be 30 times larger than the spin moment, and can be
used as an effective way to detect and generate the valley
polarization (Xiao et al., 2007b; Yao et al., 2008).

B. Orbital magnetization

A closely related quantity to the orbital magnetic mo-
ment is the orbital magnetization in a crystal. Although
this phenomenon has been known for a long time, our
understanding of orbital magnetization in crystals has
remained in a primitive stage. In fact, there was no
proper way to calculate this quantity until recently when
the Berry phase theory of orbital magnetization is devel-
oped (Shi et al., 2007; Thonhauser et al., 2005; Xiao et al.,
2005). Here we provide a rather pictorial derivation of
the orbital magnetization based on the wavepacket ap-
proach. This derivation gives an intuitive picture of dif-
ferent contributions to the total orbital magnetization.

The main difficulty of calculating the orbital magneti-
zation is exactly the same one we faced when calculating

ε(k)
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FIG. 8 Electron energy ε̃ in a slowly varying confining poten-
tial V (r). In addition to the self-rotation, wavepackets near
the boundary will also move along the boundary due to the
potential V . Level spacings between different bulk q-states
are exaggerated; they are continuous in the semiclassical limit.
The insert shows directions of the Berry curvature, the effec-
tive force, and the current carried by a wavepacket on the left
boundary.

the electric polarization: the magnetic dipole er × p is
not defined in a periodic system. For a wavepacket this
is not a problem because it is localized in space. As we
showed in last subsection, each wavepacket carries an or-
bital moment. Thus, it is tempting to conclude that the
orbital magnetization is simply the thermodynamic av-
erage of the orbital moment. As it turns out, this is only
part of the contribution. There is another contribution
due to the center-of-mass motion of the wavepacket.

For simplicity, let us consider a finite system of elec-
trons in a two-dimensional lattice with a confining po-
tential V (r). We further assume that the potential
V (r) varies slowly at atomic length scale such that the
wavepacket description of the electron is still valid on the
boundary. In the bulk where V (r) vanishes, the electron
energy is just the bulk band-energy; near the boundary,
it will be tilted up due to the increase of V (r). Thus to
a good approximation, we can write the electron energy
as

ε̃(r, q) = ε(q) + V (r) . (4.9)

The energy spectrum in real space is sketched in Fig. 8.
Before proceeding further, we need to generalize the

velocity formula (3.6), which is derived in the presence
of an electric field. In our derivation the electric field
enters through a time-dependent vector potential A(t) so
that we can avoid the technical difficulty of calculating
the matrix element of the position operator. However,
the electric field may be also given by the gradient of
the electrostatic potential. In both cases, the velocity
formula should stay the same because it should be gauge
invariant. Therefore, in general a scalar potential V (r)
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will induce a transverse velocity of the following form

1
h̄

∇V (r)×Ω(q) . (4.10)

This generalization will be justified in Sec. VI
Now consider a wavepacket in the boundary region of

the finite system (Fig. 8). It will feel a force ∇V (r) due
to the presence of the confining potential. Consequently,
according to Eq. (4.10) the electron acquires a transverse
velocity, whose direction is parallel with the boundary
(Fig. 8). This transverse velocity will lead to a boundary
current (of the dimension “current density × width” in
2D) given by

I =
e

h̄

∫
dx

∫
dq

(2π)2
dV

dx
f(ε(q) + V )Ωz(q) , (4.11)

where x is in the direction perpendicular to the boundary,
and the integration range is taken from deep into the bulk
to outside the sample. Recall that for a current I flowing
in a closed circuit enclosing a sufficiently small area A,
the circuit carries a magnetic moment given by I · A.
Therefore the magnetization (magnetic moment per unit
area) has the magnitude of the current I. Integrating
Eq. (4.11) by part, we obtain

Mf =
1
e

∫
dε f(ε)σxy(ε) , (4.12)

where σxy(ε) is the zero-temperature Hall conductivity
for a system with Fermi energy ε:

σxy(ε) =
e2

h̄

∫
dq

(2π)d
Θ(ε− ε(q))Ωz(q) . (4.13)

Since the boundary current corresponds to the global
movement of the wavepacket center, we call this contri-
bution the “free current” contribution, whereas the or-
bital moment are due to “localized” current. The total
magnetization thus is

Mz =
∫

dq

(2π)d
f(q)mz(q) +

1
e

∫
dε f(ε)σxy(ε) . (4.14)

The orbital magnetization has two different contribu-
tions: one is from the self-rotation of the wavepacket,
and the other is due to the center-of-mass motion. Gat
and Avron obtained an equivalent result for the special
case of the Hofstadter model (Gat and Avron, 2003a,b).

The reader may still have one question in mind: the
above derivation relies on the existence of a confining
potential, which seems to contradict the fact that the or-
bital magnetization is a bulk property. This is a wrong
assertion as the final expression, Eq. (4.14), is given
in terms of the bulk Bloch functions and does not de-
pend on the boundary condition. Here, the boundary
is merely a tool to expose the “free current” contribu-
tion because in a uniform system, the magnetization cur-
rent always vanishes in the bulk. Finally, in more rigor-
ous approaches (Shi et al., 2007; Xiao et al., 2005) the

boundary is not needed and the derivation is based on a
pure bulk picture. It is similar to the quantum Hall ef-
fect, which can be understood in terms of either the bulk
states (Thouless et al., 1982) or the edge states (Halperin,
1982).

C. Dipole moment

The finite size of the wavepacket not only allows an
orbital magnetic moment, but also leads to the concept
of the dipole moment associated with an operator.

The dipole moment appears naturally when we con-
sider the thermodynamic average of a physical quantity,
with its operator denoted by Ô. In the wavepacket ap-
proach, it is given by

O(r) =
∫
drcdqc

(2π)3
g(rc, qc)〈W |Ôδ(r − r̂)|W 〉 , (4.15)

where g(r, q) is the distribution function, 〈W | · · · |W 〉
denotes the expectation in the wavepacket state, and
δ(r − r̂) plays the role as a sampling function, as shown
in Fig. 9. An intuitive way to view Eq. (4.15) is to think
the wavepackets as small molecules, then Eq. (4.15) is the
quantum mechanical version of the familiar coarse grain-
ing process which averages over the length scale larger
than the size of the wavepacket. A multipole expansion
can be carried out. But for most purposes, the dipole
term is enough. Expand the δ-function to first order of
r̂ − rc:

δ(r − r̂) = δ(r − rc)− (r̂ − rc) ·∇δ(r − rc) . (4.16)

Inserting it into Eq. (4.15) yields

O(r) =
∫

dq

(2π)3
g(r, q)〈W |Ô|W 〉

∣∣
rc=r

−∇ ·
∫

dq

(2π)3
g(r, q)〈W |Ô(r̂ − rc)|W 〉

∣∣
rc=r

.

(4.17)

3

III. SEMICLASSICAL THEORY

We consider a piece of ferromagnet in the shape of a thin film with its magnetization parallel
to the z-axis. Since we are interested in transport properties in the clean limit, only off-diagonal
elements of the coefficients Lαβ

ab will be discussed in detail. The diagonal elements are trivial and
satisfy the Onsager relation.

It is useful to first calculate the coefficient L11
ab because of the similarity between the problems

caused by the chemical potential and temperature gradients and because of the fact that it has
been well studied in the AHE context. We assume ∇µ = 0 and ∇T = 0. Applying an electric field
along the y-axis induces a particle-current in the x-direction:

Jx =
∑

n

∫
dk

(2π)3
fn(k)Ωn(k)eEy , (16)

L11
xy = −T

∑

n

∫
dk

(2π)3
fn(k)Ωn(k) . (17)

This is proportional to the well-known anomalous Hall conductivity. Now instead of an electric
field, we suppose that there is a chemical potential gradient ∇yµ across the sample. From Eq. (10)
we can see that the response to ∇yµ is equivalent to the response to −e∇yV = eEy. However,
just as the temperature gradient, the chemical potential gradient does not enter into the equations
of motion. As a result, one cannot derive a current flowing in the x-direction. Where does this
current come from?

Let us recall that within the semiclassical approach, each electron is actually described by a
wave packet with finite size; they cannot be treated as point particles. Therefore the expectation
value of an operator should be written as (here and in the following we neglect the sum over band
index n)

O(r) =
∫

drcdkc

(2π)3
g(rc,kc)〈W |Ôδ(r − r̂)|W 〉 , (18)

where g(r,k) is determined from the Boltzmann equation, |W 〉 is the wave packet centered at
(rc,kc), and δ(r − r̂) plays the role as a sampling function, as shown in Fig. 1. Since the wave
packet is well localized around rc we can expand the δ-function to first order of r̂ − rc:

δ(r − r̂) = δ[(r − rc)− (r̂ − rc)] = δ(r − rc)− (r̂ − rc) · ∇rδ(r − rc) . (19)

L
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FIG. 1: Sampling function and a wave packet at rc. The width L of the sampling function is sufficiently small
so that it can be treated as a δ-function at the macroscopic level and is sufficiently big so that it contains a
large number of wave packets of width l inside its range. Eq. (18) is indeed a microscopic average over the
distance L around the point r. See Section 6.6 in Ref. [12] for an analogy in macroscopic electromagnetism.

FIG. 9 Sampling function and a wavepacket at rc. The width
L of the sampling function is sufficiently small so that it can
be treated as a δ-function at the macroscopic level and is suf-
ficiently big so that it contains a large number of wavepackets
of width l inside its range. Eq. (4.15) is indeed a microscopic
average over the distance L around the point r. See Section
6.6 in Jackson (1998) for an analogy in macroscopic electro-
magnetism.
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wave packet
W ( r ; rc , kc)

rc

FIG. 10 The wavepacket description of a charge carrier whose
center is (rc, qc). A wavepacket generally possesses two kinds
of motion: the center of mass motion and the self-rotation
around its center. From Xiao et al., 2006b.

The first term is what one would obtain if the wavepacket
is treated as a point particle. The second term is due to
the finite size of the wavepacket. We can see that the
bracket in the second integral has the form of a dipole of
the operator O, defined by

PÔ = 〈W |Ô(r̂ − rc)|W 〉 , (4.18)

The dipole moment of an observable is a general conse-
quence of the wavepacket approach and must be included
in the semiclassical theory. Its contribution appears only
when the system is inhomogeneous.

In particular, we find:

1. If Ô = e, then Pe = 0. This is consistent with the
fact that the charge center coincides with the mass
center of the electron.

2. If Ô = v̂, one finds the expression for the local
current:

jL =
∫

dq

(2π)3
g(r, q)ṙ + ∇×

∫
dq

(2π)3
g(r, q)m(q) .

(4.19)
We will explain the meaning of local later. Inter-
estingly, this is the second time we encounter the
quantity m(q), but in an entirely different context.
The physical meaning of the second term becomes
transparent if we make reference to the self-rotation
of the wavepacket. The self-rotation can be thought
as localized circuit. Therefore if the distribution is
not uniform, those localized circuit will contribute
to the local current jL (See Fig. 10).

3. If Ô is the spin operator ŝ, then Eq. (4.18) gives
the spin dipole

Ps = 〈u|s(i ∂
∂q

−Aq)|u〉 . (4.20)

It shows that in general the spin center and the
mass center do not coincide, which is usually due
to the spin-orbit interaction. The time derivative
of the spin dipole contributes to the total spin cur-
rent (Culcer et al., 2004).

D. Anomalous thermoelectric transport

As an application of the above concepts, we consider
the problem of anomalous thermoelectric transport in

ferromagnets, which refers to the appearance of a Hall
current driven by statistical forces, such as the gradient
of temperature and chemical potential (Chien and West-
gate, 1980). Similar to the anomalous Hall effect, there
are also intrinsic and extrinsic contributions, and we will
focus on the former.

A question immediately arises when one tries to for-
mulate this problem. Recall that in the presence of an
electric field, the electron acquires an anomalous velocity
proportional to the Berry curvature, which gives rise to
a Hall current. In this case, the driving force is of me-
chanical nature: it exists on the microscopic level and
can be described by a perturbation to the Hamiltonian
for the carriers. On the other hand, transport can be
also driven by statistical force. However, the statisti-
cal force manifests on the macroscopic level and makes
sense only through the statistical distribution of the car-
riers. Since there is no force acting directly on individual
particles, the obvious cause for the Berry phase assisted
transport is eliminated. This conclusion would introduce
a number of basic contradictions to the standard trans-
port theory. First, a chemical potential gradient would
be distinct from the electric force, violating the basis for
the Einstein relation. Second, a temperature gradient
would not induce an intrinsic charge Hall current, violat-
ing the Mott relation. Finally, it is also unclear whether
the Onsager relation is satisfied or not.

It turns out the correct description of anomalous ther-
moelectric transport in ferromagnets requires the knowl-
edge of both the magnetic moment and orbital magne-
tization. Firstly, as we showed in Eq. (4.19), the local
current is given by

jL =
∫

dq

(2π)d
g(r, q)ṙ + ∇×

∫
dq

(2π)d
f(r, q)m(q) ,

(4.21)
where in the second term we have replaced the distri-
bution function g(r, q) with the local Fermi-Dirac func-
tion f(r, q), which is sufficient for a first-order calcula-
tion. Secondly, in ferromagnetic systems, it is impor-
tant to discount the contribution from the magnetiza-
tion current. It was argued that the magnetization cur-
rent cannot be measured by conventional transport ex-
periments (Cooper et al., 1997). Therefore the transport
current is given by

j = jL −∇×M(r) . (4.22)

Using Eq. (4.14), one finds

j =
∫

dq

(2π)d
g(r, q)ṙ − 1

e
∇×

∫
dεf(ε)σAH

z (ε) . (4.23)

Equation (4.23) is the most general expression for
the transport current. We notice that the contribution
from the orbital magnetic moment m(q) cancels out.
This agrees with the intuitive picture we developed in
Sec. IV.B, i.e., the orbital moment is due to the self-
rotation of the wavepacket, therefore it is localized and
cannot contribute to transport (see Fig. 10).
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In the presence of a statistical force, there are two
ways for a Hall current to occur. The asymmetric scat-
tering will have an effect on the distribution g(r, q),
which is obtained from the Boltzmann equation (Berger,
1972). This results in a transverse current in the first
term of Eq. (4.23). In addition to that, there is an
intrinsic contribution comes from the orbital magneti-
zation, which is the second term of Eq. (4.23). Note
that the spatial dependence enters through T (r) and
µ(r) in the distribution function. It is straightforward to
verify that for the intrinsic contribution to the anoma-
lous thermoelectric transport, both the Einstein relation
and Mott relation still hold (Onoda et al., 2008; Xiao
et al., 2006b). Hence, the measurement of this type
of transport, such as the anomalous Nernst effect, can
give further insight of the intrinsic mechanism of the
anomalous Hall effect. Great experimental efforts have
been put along this line. The intrinsic contribution has
been verified in CuCr2Se4−xBrx (Lee et al., 2004a,b),
La1−xSrxCoO3 (Miyasato et al., 2007), Nd2Mo2O7 and
Sm2Mo2O7 (Hanasaki et al., 2008), Ga1−xMnx (Pu et al.,
2008).

Equation (4.23) is not limited to transport driven by
statistical forces. As we shall show later, at the micro-
scopic level the mechanical force generally has two effects:
it can drive the electron motion directly, and appears in
the expression for ṙ; it can also make the electron energy
and the Berry curvature spatially dependent, hence also
manifest in the second term in Eq. (4.23). The latter
provides another route for the Berry phase to enter the
transport problems in inhomogeneous situations, which
can be caused by a non-uniform distribution function,
or a spatially-dependent perturbation, or both. One ex-
ample is the electrochemical potential −eφ(r) + µ(r)/e,
which can induce an anomalous velocity term in the equa-
tion of motion through −eφ(r), and also affect the dis-
tribution function through µ(r).

V. ELECTRON DYNAMICS IN ELECTROMAGNETIC
FIELDS

In last section we discussed the construction and gen-
eral properties of a wavepacket. Now we are set to study
its dynamics under external perturbations. The most
common perturbations to a crystal are the electromag-
netic fields. The study of the electron dynamics under
such perturbations dates back to Bloch, Peierls, Jones,
and Zener in the early 1930s, and is continued by Slater
(1949), Luttinger (1951), Adams (1952), Karplus and
Luttinger (1954), Kohn and Luttinger (1957), Adams
and Blount (1959), Blount (1962a), Brown (1967), Zak
(1977), Rammal and Bellissard (1990), Wilkinson and
Kay (1996). In this section we present the semiclassical
theory based on the wavepacket approach (Chang and
Niu, 1995, 1996).

A. Equations of motion

In the presence of electromagnetic fields, the Hamilto-
nian is given by

H =
[p + eA(r)]2

2m
+ V (r)− eφ(r) , (5.1)

where V (r) is the periodic lattice potential, and A(r)
and φ(r) are the electromagnetic potentials. If the length
scale of the perturbations is much larger than the spatial
spread of the wavepacket, the approximate Hamiltonian
that the wavepacket “feels” may be obtained by lineariz-
ing the perturbations about the wavepacket center rc as

H ≈ Hc + ∆H , (5.2)

Hc =
[p + eA(rc)]2

2m
+ V (r)− eφ(rc) , (5.3)

∆H =
e

2m
{A(r)−A(rc),p} − eE · (r − rc) , (5.4)

where {, } is the anticommutator. Naturally, we can then
construct the wavepacket using the eigenstates of the lo-
cal Hamiltonian Hc. The effect of a uniform A(rc) is to
add a phase to the eigenstates of the unperturbed Hamil-
tonian. Therefore the wavepacket can be written as

|W (kc, rc)〉 = e−ie/h̄A(rc)·r|W0(kc, rc)〉 , (5.5)

where |W0〉 is the wavepacket constructed using the un-
perturbed Bloch functions.

The wavepacket dynamics can be obtained from the
time-dependent variational principles (Kramer and Sara-
ceno, 1981). The basic recipe is to first obtain the Lan-
gragian from the following equation,

L = 〈W |ih̄ ∂
∂t
−H|W 〉 (5.6)

then obtain the equations of motion using the Euler
equations. Using Eq. (4.5) we find that 〈W |ih̄ ∂

∂t |W 〉 =
eȦ · Rc − h̄ ∂

∂t argw(kc, t). For the wavepacket energy,
we have 〈W |∆H|W 〉 = −m(k) ·B. This is expected as
we already showed that the wavepacket carries an orbital
magnetic moment m(k) that will couple to the magnetic
field. Using Eq. (4.5), we find the Langragian is given
by, up to some unimportant total time-derivative terms
(dropping the subscript c on rc and kc),

L = h̄k · ṙ − εM (k) + eφ(r)− eṙ ·A(r, t) + h̄k̇ ·An(k) ,
(5.7)

where εM (k) = ε0(k) − B · m(k) with ε0(k) being the
unperturbed band energy. The equations of motion is

ṙ =
∂εM (k)
h̄∂k

− k̇ ×Ω(k) , (5.8a)

h̄k̇ = −eE − eṙ ×B . (5.8b)

Compared to the conventional equations of motion for
Bloch electrons (Ashcroft and Mermin, 1976b), there are
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two differences: (1) The electron energy is modified by
the orbital magnetic moment; (2) the electron velocity
gains an extra velocity term proportional to the Berry
curvature. As we can see, in the case of only an elec-
tric field, Eq. (5.8a) reduces to the anomalous velocity
formula (3.6) we derived before.

B. Modified density of states

The Berry curvature not only modifies the electron dy-
namics, but also has a profound effect on the electron
density of states in the phase space (Xiao et al., 2005). 10

Recall that in solid state physics, the expectation value
of an observable, in the Bloch representation, is given by∑

nk

fnk〈ψnk|Ô|ψnk〉 , (5.9)

where fnk is the distribution function. In the semiclassi-
cal limit, the sum is converted to an integral in k-space,∑

k

→ 1
V

∫
dk

(2π)d
, (5.10)

where V is the volume, and (2π)d is the density of states,
i.e., number of states per unit k-volume. From a classical
point of view, the constant density of states is guaranteed
by the Liouville theorem, which states that the volume
element is a conserved quantity during the time evolu-
tion of the system. 11 However, as we shall show below,
this is no longer the case for the Berry-phase modified
dynamics.

The time evolution of a volume element ∆V = ∆r∆k
is given by

1
∆V

∂∆V
∂t

= ∇r · ṙ + ∇k · k̇ . (5.11)

Insert the equations of motion (5.8) into the above equa-
tion. After some algebra, we find

∆V =
V0

1 + (e/h̄)B ·Ω
. (5.12)

The fact that the Berry curvature is generally k-
dependent and the magnetic fields is r-dependent im-
plies that the phase-space volume ∆V changes during
time evolution of the state variables (r,k).

10 The phase space is spanned by k and r. Although the Lagrangian
depends both on (k, r) and their velocities, the dependence on
the latter is only to linear order. This means that the momenta,
defined as the derivative of the Lagrangian with respect to these
velocities, are functions of (k, r) only and are independent of
their velocities. Therefore, (k, r) also span the phase space of
the Hamiltonian dynamics.

11 The actual value of this constant volume for a quantum state,
however, can be determined only from the quantization condi-
tions in quantum mechanics.

Although the phase space volume is no longer con-
served, it is a local function of the state variables and
has nothing to do with the history of time evolution. We
can thus introduce a modified density of states

D(r,k) =
1

(2π)d
(1 +

e

h̄
B ·Ω) (5.13)

such that the number of states in the volume element,
Dn(r,k)∆V , remains constant in time. Therefore, the
correct semiclassical limit of the sum in Eq. (5.9) is

O(R) =
∫
dkD(r,k)〈Oδ(r̂ −R)〉W , (5.14)

where 〈· · ·〉W is the expectation value in a wavepacket,
which could includes the dipole contribution due to the
finite size of the wavepacket (See Sec. 4.18). In a uniform
system it is simply given by

O =
∫
dkD(k)f(k)O(k) (5.15)

We emphasize that although the density of states is no
longer a constant, the dynamics itself is still Hamiltonian.
The modification comes from the fact that the dynami-
cal variables, r and k, are no longer canonical variables,
and the density of states can be regarded as the phase
space measure (Bliokh, 2006b; Duval et al., 2006a,b; Xiao
et al., 2006a). The phase space measure dkdr is true
only when k and r form a canonical set. However, the
phase space variables obtained from the wavepacket are
generally not canonical as testified by their equations of
motion. A more profound reason for this modification
has its quantum mechanical origin in non-commutative
quantum mechanics, discussed in Sec. VII.

In the following we discuss two direct applications of
the modified density of states in metals and in insulators.

1. Fermi volume

We show that the Fermi volume can be changed lin-
early by a magnetic field when the Berry curvature is
nonzero. Assume zero temperature, the electron density
is given by

ne =
∫

dk

(2π)d

(
1 +

e

h̄
B ·Ω

)
Θ(εF − ε) (5.16)

We work in the canonical ensemble by requiring the elec-
tron number fixed, therefore, to first order of B, the
Fermi volume must be changed by

δVF = −
∫

dk

(2π)d

e

h̄
B ·Ω . (5.17)

It is particularly interesting to look at insulators, where
the integration is limited to the Brillouin zone. Then the
electron must populate a higher band if

∫
BZ
dk B ·Ω is
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negative. When this quantity is positive, holes must ap-
pear at the top of the valance bands. Discontinuous be-
havior of physical properties in a magnetic field is there-
fore expected for band insulators with a nonzero integral
of the Berry curvatures (Chern numbers).

2. Streda Formula

In the context of the quantum Hall effect, Streda
(1982) derived a formula relating the Hall conductivity
to the field derivative of the electron density at a fixed
chemical potential

σxy = −e
( ∂ne

∂Bz

)
µ
. (5.18)

There is a simple justification of this relation by a ther-
modynamic argument by considering the following adia-
batic process in two dimensions. A time dependent mag-
netic flux generates an electric field with an emf around
the boundary of some region; and the Hall current leads
to a net flow of electrons across the boundary and thus
a change of electron density inside. Note that this ar-
gument is valid only for insulators because in metals the
adiabaticity would break down. Using Eq. (5.16) for an
insulator, we obtain, in 2D

σxy = −e
2

h̄

∫
BZ

dk

(2π)2
Ωxy . (5.19)

This is what Thouless et al. (1982) obtained using the
Kubo formula. The fact that the quantum Hall conduc-
tivity can be derived using the modified density of states
further confirms the necessity to introduce this concept.

C. Orbital magnetization: Revisit

We have discussed the orbital magnetization using a
rather pictorial derivation in Sec. IV.B. Here we derive
the formula again by using the field-dependent density of
states (5.13).

The equilibrium magnetization density can be ob-
tained from the grand canonical potential, which, within
first order in the magnetic field, may be written as

F = − 1
β

∑
k

log(1 + e−β(εM−µ))

= − 1
β

∫
dk

(2π)d
(1 +

e

h̄
B ·Ω) log(1 + e−β(εM−µ)) ,

(5.20)

where the electron energy εM = ε(k) − m(k) · B in-
cludes a correction due to the orbital magnetic mo-
ment m(k). The magnetization is then the field deriva-
tive at fixed temperature and chemical potential, M =

−(∂F/∂B)µ,T , with the result

M(r) =
∫

dk

(2π)d
f(k)m(k)

+
1
β

∫
dk

(2π)d

e

h̄
Ω(k) log(1 + e−β(ε−µ)) .

(5.21)

Integration by parts of the second term will give us the
exact formula obtained in Eq. (4.14). We have thus
derived a general expression for the equilibrium orbital
magnetization density, valid at zero magnetic field but
at arbitrary temperatures. From this derivation we can
clearly see that the orbital magnetization is indeed a bulk
property. The center-of-mass contribution identified be-
fore comes from the Berry-phase correction to the elec-
tron density of states.

Following the discussions on band insulators in our first
example in Sec. V.B.1, there will be a discontinuity of the
orbital magnetization if the integral of the Berry curva-
ture over the Brillouin zone, or the anomalous Hall con-
ductivity, is non-zero and quantized. Depending on the
direction of the field, the chemical potential µ0 in the
above formula should be taken at the top of the valence
bands or the bottom of the conduction bands. The size
of the discontinuity is given by the quantized anomalous
Hall conductivity times Eg/e, where Eg is the energy
gap.

Similar formula for insulators with zero Chern number
has been obtained by Ceresoli et al. (2006); Thonhauser
et al. (2005) using the Wannier function approach and
by Gat and Avron (2003a,b) for the special case of the
Hofstadter model. Recently, Shi et al. (2007) provided
a full quantum mechanical derivation of the formula,
and showed that it is valid in the presence of electron-
electron interaction, provided the one-electron energies
and wave functions are calculated self-consistently within
the framework of the exact current and spin-density func-
tional theory (Vignale and Rasolt, 1988).

The appearance of the Hall conductivity is not a coin-
cidence. Let us consider an insulator. The free energy is
given by

dF = −MdB − ndµ− SdT . (5.22)

Using the Maxwell relation, we have

σH = −e
( ∂n
∂B

)
µ,T

= −e
(∂M
∂µ

)
B,T

. (5.23)

On the other hand, the zero-temperature formula of the
magnetization for an insulator is given by

M =
∫

BZ

dk

(2π)3
{m(k) +

e

h̄
(µ− ε)Ω} . (5.24)

Inserting it into Eq. (5.23) gives us once again the quan-
tized Hall conductivity.
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D. Magnetotransport

The equations of motion (5.8) and the density of
states (5.13) gives us a complete description of the elec-
tron dynamics in the presence of electromagnetic fields.
In this subsection we apply these results to the prob-
lem of magnetotransport. For simple notations, we set
e = h̄ = 1 and introduce the shorthand [dk] = dk/(2π)d.

1. Cyclotron period

Semiclassical motion of a Bloch electron in a uni-
form magnetic field is important to understand various
magneto-effects in solids. In this case, the equations of
motion reduce to

D̄(k)ṙ = v + (v ·Ω)B , (5.25a)

D̄(k)k̇ = −v ×B , (5.25b)

where D̄(k) = D(k)/(2π)d = 1 + (e/h̄)B ·Ω.
We assume the field is along the z-axis. From the sec-

ond equation of (5.25) we can see that motion in k-space
is confined in the xy-plane and is completely determined
once the energy ε and the z component of the wave vector
kz is given. Let us calculate the period of the cyclotron
motion. The time for the wave vector to move from k1

to k2 is

t2 − t1 =
∫ t2

t1

dt =
∫ k2

k1

dk

|k̇|
. (5.26)

From the equations of motion (5.25) we have

|k̇| = B|v⊥|
D̄(k)

=
B|(∂ε/∂k)⊥|

h̄D̄(k)
. (5.27)

On the other hand, the quantity (∂ε/∂k)⊥ can be written
as ∆ε/∆k, where ∆k denotes the vector in the plane
connecting points on neighboring orbits of energy ε and
ε+ ∆ε, respectively. Then

t2 − t1 =
h̄

B

∫ k2

k1

D̄(k)∆k dk

∆ε
. (5.28)

Introducing the 2D electron density for given ε and kz

n2(ε, kz) =
∫∫

kz,ε(k)<ε

D̄(k) dkxdky

(2π)2
, (5.29)

the period of a cyclotron motion can be written as

T = (2π)2
h̄

B

∂n2(ε, kz)
∂ε

. (5.30)

We thus recovered the usual expression for the cyclotron
period, with the 2D electron density, Eq. (5.29), defined
with the modified density of states.

In addition, we note that there is a velocity term pro-
portional to B in Eq. (5.25), which seems to suggest there

will be a current along the field direction. We show that
after averaging over the distribution function, this cur-
rent is actually zero. The current along B is given by

jB = −eB
∫

[dk]fv ·Ω

= − e
h̄

B

∫
[dk]∇kF ·Ω

= − e
h̄

B
(∫

[dk]∇k(FΩ)−
∫

[dk]F∇k ·Ω
)
,

(5.31)

where F (ε) = −
∫∞

ε
f(ε′)dε′ and f(ε) = ∂F/∂ε. The

first term vanishes 12 and if there is no magnetic
monopole in k-space, the second term also vanishes.
In above calculation we did not consider the change of
the Fermi surface. Since it always comes in the form
(∂f/∂µ)δµ = −(∂f/∂ε)δµ we can use the same technique
to prove that the corresponding current also vanishes.

2. The high field limit

We now consider the magnetotransport at the so-called
high field limit, i.e., ωcτ � 1, where ωc = 2π/T is the
cyclotron frequency and τ is the relaxation time. We
consider configuration where the electric and magnetic
fields are perpendicular to each other, i.e., E = Ex̂, B =
Bẑ and E ·B = 0.

In the high field limit, ωcτ � 1, the electron can finish
several turns between two successive collisions. We can
then assume all orbits are closed. According to the theo-
rem of adiabatic drifting (Niu and Sundaram, 2001), an
originally closed orbit remains closed for weak perturba-
tions, so that

0 = 〈k̇〉 = E + 〈ṙ〉 ×B . (5.32)

Or

〈ṙ〉⊥ =
E ×B

B2
. (5.33)

The Hall current is simply the sum over 〈ṙ〉⊥ of occupied
states:

jH = −eE ×B

B2

∫
[dk]f(k)(1 + B ·Ω)

= −eE ×B

B2

∫
[dk]f(k)D̄(k) .

(5.34)

12 For any periodic function F (k) with the periodicity of a recip-
rocal Bravais lattice, the following identity holds for integrals
taken over a Brillouin zone,

R
BZ dk ∇kF (k) = 0. To see this,

consider I(k′) =
R

dk F (k + k′). Because F (k) is periodic
in k, I(k′) should not depend on k′. Therefore, ∇k′I(k′) =R

dk, ∇k′F (k + k′) =
R

dk∇kF (k + k′) = 0. Setting k′ = 0
gives the desired expression. This is also true if F (k) is a vector
function.
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Therefore in the high field limit we reach the remarkable
conclusion: the total current in crossed electric and mag-
netic fields is the Hall current as if calculated from free
electron model

j = −eE ×B

B2
n , (5.35)

and it has no dependence on the relaxation time τ . This
result ensures that even in the presence of anomalous
Hall effect, the high field Hall current gives the “real”
electron density.

Let us now consider the hole-like band. The Hall
current is obtained by substracting the contribution of
holes from that of the filled band, which is given by
−eE ×

∫
[dk]Ω. Therefore

jhole = e
E ×B

B2

∫
[dk]D̄(k)[1− f(k)]− eE ×

∫
[dk]Ω .

(5.36)
So for the hole-like band, there is an additional term in
the current expression proportional to the Chern number
(the second integral) of the band.

3. The Low Field Limit

Next we consider the magnetotransport at the low field
limit, i.e., ωcτ � 1. In particular, we show that the Berry
phase induce a linear magnetoresistance. By solving the
Boltzmann equation, one finds that the diagonal element
of the conductivity is given by

σxx = −e2
∫

[dk]τ
∂f0
∂ε

v2
x

D̄(k)
. (5.37)

This is just the zeroth order expansion based on ωcτ .
There are four places in this expression depending on B.
(1) There is an explicit B-dependence in D̄(k). (2) The
electron velocity vx is modified by the orbital magnetic
moment:

vx =
1
h̄

∂(ε0 −mzB)
∂kx

= v(0)
x − 1

h̄

∂mz

∂kx
B . (5.38)

(3) There is also a modification to the Fermi energy, given
by Eq. (5.17). (4) The relaxation time τ can also depend
on B. In the presence of the Berry curvature, the collision
term in the Boltzmann equation is given by

∂f

∂t

∣∣∣
coll

= −
∫

[dk′]D̄(k′)Wkk′ [f(k)− f(k′)] , (5.39)

where Wkk′ is the transition probability from k′ to k
state. In the relaxation-time approximation we make the
assumption that a characteristic relaxation time exists so
that

f − f0
τ

= D̄(k)
∫

[dk′]
D̄(k′)
D̄(k)

Wkk′ [f(k)−f(k′)] . (5.40)

If we assume Ω(k) is smooth and Wkk′ is localized, the
relaxation time can be approximated by

τ =
τ0

D̄(k)
≈ τ0

(
1− e

h̄
B ·Ω

)
. (5.41)

More generally, we can always expand the relaxation time
to first order of (e/h̄)B ·Ω,

τ = τ0 + τ1
e

h̄
B ·Ω , (5.42)

where τ1 should be regarded as a fitting parameter within
this theory.

Expand expression (5.37) to first order of B, and take
the spherical band approximation, we obtain

σ(1)
xx = e2τ0B

[∫
[dk]

∂f0
∂ε

(2eΩz

h̄
v2

x +
2
h̄

∂mz

∂kx
vx

)
− e

h̄
〈(M)−1

xx 〉kF

∫
[dk]fΩz

]
,

(5.43)

where M is the effect mass tensor. The zero-field con-
ductivity takes the usual form

σ(0)
xx = −e2τ0

∫
[dk]

∂f0
∂ε

v2
x . (5.44)

The ratio −σ(1)
xx /σ

(0)
xx will then give us the linear magne-

toresistance.

VI. ELECTRON DYNAMICS UNDER GENERAL
PERTURBATIONS

In this section we present the general theory of elec-
tron dynamics in slowly perturbed crystals (Panati et al.,
2003; Shindou and Imura, 2005; Sundaram and Niu,
1999). As expected, the Berry curvature enters into
the equations of motion and modifies the density of
states. The difference is that one needs to introduce the
Berry curvature defined in the extended parameter space
(r, q, t). Two physical applications are considered: elec-
tron dynamics in deformed crystals, and adiabatic cur-
rent induced by inhomogeneity.

A. Equations of motion

We consider a slowly perturbed crystal whose Hamil-
tonian can be expressed in the following form

H[r,p;β1(r, t), ...βg(r, t)] , (6.1)

where {βi(r, t)} are the modulation function charac-
terizing the perturbations. They may represent either
gauge potentials of electromagnetic fields, atomic dis-
placements, charge or spin density waves, helical mag-
netic structures, or compositional gradients. Following
the same procedure as we have used in last section, we
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expand the Hamiltonian around the wavepacket center,
and obtain

H = Hc + ∆H , (6.2)
Hc = H[r,p; {βi(rc, t)}] , (6.3)

∆H =
∑

i

∇rcβi(rc, t) · {(r − rc),
∂H

∂βi
} . (6.4)

Since the local Hamiltonian Hc maintains periodicity of
the unperturbed crystal, its eigenstates take the Bloch
form

Hc(rc, t)|ψq(rc, t)〉 = εc(rc, q, t)|ψq(rc, t)〉 , (6.5)

where q is the Bloch wave vector and εc(rc, q, t) is the
band energy. Here we have dropped the band index n for
simplicity.

Following the discussion in Sec. I.D, we switch to the
Bloch Hamiltonian Hc(q, rc, t) = e−iq·rHc(rc, t)eiq·r,
whose eigenstate is the periodic part of the Bloch func-
tion, |u(q, rc, t)〉 = e−iq·r|ψ(q, rc, t)〉. The Berry vector
potentials can be defined for each of the coordinates of
the parameter space (q, rc, t); for example,

At = 〈u|i∂t|u〉 . (6.6)

After constructing the wavepacket using the local
Bloch functions |ψq(rc, t)〉, one can apply the time-
dependent variational principle to find the Langragian
governing the dynamics of the wavepacket:

L = −ε+ qc · ṙc + q̇c ·Aq + ṙc ·Ar +At , (6.7)

Note that the wavepacket energy ε = εc + ∆ε has a cor-
rection ∆ε from ∆H,

∆ε = 〈W |∆H|W 〉 = −=〈 ∂u
∂rc

| · (εc −Hc)|
∂u

∂q
〉 . (6.8)

From the Lagrangian (6.7) we obtain the following equa-
tions of equation:

ṙc =
∂ε

∂qc
− (Ω

↔
qr · ṙc + Ω

↔
qq · q̇c)−Ωqt , (6.9a)

q̇c = − ∂ε

∂rc
+ (Ω

↔
rr · ṙc + Ω

↔
rq · q̇c) + Ωrt (6.9b)

where Ω’s are the Berry curvatures. For example,

(Ω
↔

qr)αβ = ∂qαArβ
− ∂rβ

Akα . (6.10)

In the following we will also drop the subscript c on rc

and qc.
The form of the equations of motion is quite symmet-

rical with respect to r and q, and there are Berry cur-
vatures between every pair of phase space variables plus
time. The term Ωqt was identified as the adiabatic veloc-
ity vector in Sec. II. In fact, if the perturbation is uniform
in space (has the same period as the unperturbed crystal)

and only varies in time, all the spatial derivatives vanish;
we obtain

ṙ =
∂ε

∂q
−Ωqt , q̇ = 0 . (6.11)

The first equation is the velocity formula (2.5) obtained
in Sec. II. The term Ω

↔
qq was identified as the Hall con-

ductivity tensor. In the presence of electromagnetic per-
turbations, we have

H = H0[q + eA(r)]− eφ(r, t) . (6.12)

Hence the local basis can be written as |u(rc, q)〉 =
|u(k)〉, where k = q + eA(r). One can verify that by
using the chain rule ∂qα = ∂kα and ∂rα = (∂rαAβ)∂kβ

,
∆ε given in Eq. (6.8) becomes −m(k) ·B, and the equa-
tions of motion (6.9) reduces to Eq. (5.8). The physics
of quantum adiabatic transport and the quantum and
anomalous Hall effect can be described from a unified
point of view. The Berry curvature Ωrt plays a role like
the electric force. The antisymmetric tensor Ω

↔
rr is re-

alized in terms of the magnetic field in the Lorenz force
and is also seen in the singular form (δ-function like dis-
tribution) of dislocations in a deformed crystal (Bird and
Preston, 1988). Finally, the Berry curvature between r
and q can be realized in deformed crystals as a quantity
proportional to the strain and the electronic mass renor-
malization in the crystal (Sundaram and Niu, 1999).

B. Modified density of states

The electron density of states is also modified by the
Berry curvature. Let us consider the time-independent
case. To better appreciate the origin of this modification,
we introduce the phase space coordinates ξ = (r, q). The
equations of motion can be written as

Γαβ ξ̇β = ∇ξα
ε , (6.13)

where Γ
↔

= Ω
↔
− J
↔

is an antisymmetric matrix with

Ω
↔

=

(
Ω
↔

rr Ω
↔

rq

Ω
↔

qr Ω
↔

qq

)
, J

↔
=

(
0 I

↔

−I
↔

0

)
. (6.14)

According to standard theory of Hamiltonian dynam-
ics (Arnold, 1978), the density of states, which is pro-
portional to the phase space measure is given by

D(r, q) =
1

(2π)d

√
det(Ω

↔
− J
↔

) . (6.15)

One can show that in the time-dependent case D(r, q)
has the same form.

Let us consider the following situations. (i) If the per-
turbation is electromagnetic field, by the variable substi-
tution k = q + eA(r), Eq. (6.15) reduces to Eq. (5.13).
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(ii) In many situations we are aiming at a first-order cal-
culation in the spatial gradient. In this case, the density
of states is given by

D =
1

(2π)d
(1 + TrΩ

↔
qr) . (6.16)

Note that if the Berry curvature vanishes, Eq. (6.13)
becomes the canonical equations of motion for Hamilto-
nian dynamics, and r and q are called canonical vari-
ables. The density of states is a constant in this case.
The presence of the Berry curvature renders the variables
non-canonical and, as a consequence, modifies the den-
sity of states. The non-canonical variables are a common
feature of Berry-phase participated dynamics (Littlejohn
and Flynn, 1991). The modified density of states also
arises naturally from a nonequilibrium approach (Olson
and Ao, 2007).

To demonstrate the modified density of states,
we again consider the Rice-Mele model discussed in
Sec. II.C.1. This time we introduce the spatial depen-
dence by letting the dimerization parameter δ(x) vary in
space. Using Eq. (1.19) we find

Ωqx =
∆t sin2 q

2∂xδ

4(∆2 + t2 cos2 q
2 + δ2 sin2 q

2 )3/2
. (6.17)

At half filling, the system is an insulator and its electron
density is given by

ne =
∫ π

−π

dq

2π
Ωqx . (6.18)

We let δ(x) have a kink in its profile. Such a domain wall
is known to carry fractional charge (Rice and Mele, 1982;
Su et al., 1979). Figure 11 shows the calculated electron
density using Eq. (6.18) together with numerical result
obtained by direct diagonalization of the tight-binding
Hamiltonian. These two results are virtually indistin-
guishable in the plot, which confirms the Berry-phase
modification to the density of states.

C. Deformed Crystal

In this subsection we present a general theory of elec-
tron dynamics in crystals with deformation (Sundaram
and Niu, 1999), which could be caused by external pres-
sure, defects in the lattice, or interfacial strain.

Let us set up the basic notations for this problem.
Consider a deformation described by the atomic displace-
ment {ul}. We denote the deformed crystal potential as
V (r; {Rl + ul}), where Rl is the atomic position with l
labeling the atomic site. Introducing a smooth displace-
ment field u(r) such that u(Rl + ul) = ul, the Hamilto-
nian can be written as

H =
p2

2m
+ V [r − u(r)] + sαβ(r)Vαβ [r − u(r)] , (6.19)
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FIG. 11 (color online) Electron density of the Rice-Mele
model with a spatial varying dimerization parameter. The
parameters we used are ∆ = 0.5, t = 2, and δ = tanh(0.02x).
Inset: The profile of δ(x). From Xiao et al..

where sαβ = ∂uα/∂rβ is the unsymmetrized strain, and
Vαβ [r − u(r)] =

∑
l[Rl + u(r)− r]β(∂V/∂Rlα) is a gra-

dient expansion of the crystal potential. The last term,
being proportional to the strain, can be treated pertur-
batively. The local Hamiltonian is given by

Hc =
p2

2m
+ V [r − u(rc)] , (6.20)

with its eigenstates |ψq(r − u(rc))〉.
To write down the equations of motion, two pieces of

information are needed. One is the gradient correction
to the electron energy, given in Eq. (6.8). It is found
that (Sundaram and Niu, 1999)

∆ε = sαβDαβ(q) , (6.21)

where

Dαβ = m[vαvβ − 〈v̂αv̂β〉] + 〈Vαβ〉 , (6.22)

with 〈· · ·〉 the expectation value of the enclosed operators
in the Bloch state, and v̂α is the velocity operator. Note
that in the free electron limit (V → 0) this quantity
vanishes. Which is expected since a wavepacket should
not feel the effect of a deformation of the lattice in the
absence of electron-phonon coupling. The other is the
Berry curvature, which is derived from the Berry vector
potentials. For deformed crystals, in addition to Aq,
there are two other vector potentials

Ar = fα
∂uα

∂r
, At = fα

∂uα

∂t
, (6.23)

with

f(q) =
m

h̄

∂ε

∂q
− h̄q . (6.24)

It then leads to the following Berry curvatures

Ωqαrβ
=
∂uγ

∂rβ

∂fγ

∂qα
, Ωkαt = −∂uγ

∂t

∂fγ

∂qα
,

Ωrαrβ
= Ωxαt = 0 .

(6.25)
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With the above information we just need to plug in
the electron energy as well as the Berry curvatures into
Eq. (6.9) to obtain the equations of motion.

We first consider a one-dimensional insulator with lat-
tice constant a. Suppose the system is under a uniform
strain with a new lattice constant a+δa, i.e., ∂xu = δa/a.
Assuming one electron per unit cell, the electron density
goes from 1/a to

1
a+ δa

=
1
a
(1− δa

a
) . (6.26)

On the other hand, we can also directly calculate the
change of the electron density using the modified density
of states (6.16), which gives∫ 2π/a

0

dq

2π
Ωqx = −δa

a2
. (6.27)

From a physical point of view, it says an insulator under
a uniform strain remains an insulator.

The above formalism is also applicable to dislocation
strain fields, which are well defined except in a region
of a few atomic spacings around the line of disloca-
tion. Outside this region, the displacement field u(r)
is a smooth but multiple-valued function. On account of
this multiple-valuedness, a wavepacket of incident wave
vector q taken around the line of dislocation acquires a
Berry phase

γ =
∮

c

dr ·Ar =
∮

c

du · f(k) ≈ b · f(k) , (6.28)

where b =
∮
drα∂u/∂rα is known as the Burgers vector.

What we have here is a situation similar to the Aharonov-
Bohm effect (Aharonov and Bohm, 1959), with the dis-
location playing the role of the solenoid, and the Berry
curvature Ωrr the role of the magnetic field. Bird and
Preston (1988) showed that this Berry phase can affect
the electron diffraction pattern of a deformed crystal.

The above discussion only touches a few general ideas
of the Berry phase effect in deformed crystals. With
the complete information of the equations of motion, the
semiclassical theory provides a powerful tool to investi-
gate the effects of deformation on electron dynamics and
equilibrium properties.

D. Polarization induced by inhomogeneity

In Sec. II.C we have discussed the Berry phase theory
of polarization in crystalline solids, based on the basic
idea that the polarization is identical to the integration
of the adiabatic current flow in the bulk. There the sys-
tem is assumed to be periodic and the perturbation de-
pends only on time (or any scalar for that matter). In
this case, it is straightforward to obtain the polarization
based on the equations of motion (6.11). However, in
many physical situations the system is in an inhomoge-
neous state and the electric polarization strongly depends

on the inhomogeneity. Examples include flexoelectricity
where a finite polarization is produced by a strain gradi-
ent (Tagantsev, 1986, 1991), and multiferroic materials
where the magnetic ordering varies in space and induces
a polarization (Cheong and Mostovoy, 2007; Fiebig et al.,
2002; Hur et al., 2004; Kimura et al., 2003).

Let us consider an insulating crystal with an order pa-
rameter that varies slowly in space. We assume that,
at least at the mean-field level, the system can be de-
scribed by a perfect crystal under the influence of an
external field h(r). If, for example, the order parame-
ter is the magnetization, then h(r) can be chosen as the
exchange field that yields the corresponding spin config-
uration. Our goal is to calculate the electric polarization
to first order in the spatial gradient as the field h(r) is
gradually turned on. The Hamiltonian thus takes the
form H[h(r);λ] where λ is the parameter describing the
turning on process. Xiao et al. (2007a) showed that the
first order contribution to the polarization can be clas-
sified into two categories: the perturbative contribution
due to the correction to the wave function, and the topo-
logical contribution which is from the dynamics of the
electrons.

Let us first consider the perturbation contribution,
which is basically a correction to the polarization formula
obtained by King-Smith and Vanderbilt (1993) for a uni-
form system. The perturbative contribution is obtained
by evaluating the Berry curvature Ωqt in Eq. (2.27) to
first order of the gradient. Remember that we always ex-
pand the Hamiltonian into the form H = Hc + ∆H, and
choose the eigenfunctions of Hc as our expansion basis.
Hence to calculate the Berry curvature to first order of
the gradient, one needs to know the form of the wave
function perturbed by ∆H. It has been extensively dis-
cussed in the case of an electric field (Nunes and Gonze,
2001; Souza et al., 2002).

The topological contribution is of different nature.
Starting from Eq. (6.9) and making use of the modified
density of states (6.16), one finds the adiabatic current
induced by inhomogeneity is give by

j(2)α = e

∫
BZ

dq

(2π)d

(
Ωqq

αβΩrλ
β + Ωqr

ββΩqλ
α − Ωqr

αβΩqλ
β

)
.

(6.29)
We can see that this current is explicitly proportional
to the spatial gradient. Comparing this equation with
Eq. (2.6) reveals a very elegant structure: the zeroth
order contribution, Eq. (2.6), is given as an integral of
the first Chern form, while the first order contribution,
Eq. (6.29), is given as an integral of the second Chern
form. Similar result has been obtained by Qi et al.
(2008).

The polarization is obtained by integrating the current.
As usually in the case of multiferroics, we can assume
the order parameter is periodic in space (but in general
incommensurate with the crystal lattice). A two-point
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formula can be written down 13

P (2)
α =

e

V

∫
dr

∫
BZ

dq

(2π)d

(
Aq

α∇r
βA

q
β+Aq

β∇
q
αA

r
β+Ar

β∇
q
βA

q
α

)∣∣∣1
0
,

(6.30)
where V is the volume of the periodic structure of the
order parameter. Again, due to the loss of tracking of
λ, there is an uncertain quantum which is the second
Chern number. If we assume the order parameter has
period ly in the y-direction, the polarization quantum in
the x-direction is given by

e

lyaz
, (6.31)

where a is the lattice constant.
Kunz (1986) has discussed the charge pumping in in-

commensurate potentials and he showed that in general
the charge transport is quantized and is given in the form
of Chern numbers, which is consistent with what we have
derived.

The second Chern form demands that the system
must be two-dimensional or higher, otherwise the sec-
ond Chern form vanishes. It allows us to determine the
general form of the induced polarization. Consider a two-
dimensional minimal model with h(r) having two com-
ponents. If we write H[h(r);λ] as H[λh(r)], i.e., λ acts
like a switch, the polarization can be written as

P (2) =
e

V

∫
drχ[(∇ · h)h− (h ·∇)h] . (6.32)

The coefficient χ is given by

χ =
e

8

∫
BZ

dq

(2π)2

∫ 1

0

dλ εabcdΩabΩcd , (6.33)

where the Berry curvature is defined on the parameter
space (q,h), and εabcd is the Levi-Civita antisymmetric
tensor.

Xiao et al. (2007a) also showed how the two-point for-
mula can be implemented in numerical calculations using
a discretized version (Kotiuga, 1989).

1. Magnetic field induced polarization

An important application of the above result is the
magnetic field induced polarization. Essin et al. (2008)
considered an insulator in the presence of a vector po-
tential A = Byẑ with its associated magnetic field B =
h/eazlyx̂. The inhomogeneity is introduced through the
vector potential in the z-direction. Note that magnetic
flux over the supercell az× ly in the x-direction is exactly

13 So far we only considered the Abelian Berry case. The non-
Abelian result is obtained by replacing the Chern-Simons form
with its non-Abelian form

h/e, therefore the system is periodic in the y-direction
with period ly. According to our discussion in Sec. V, the
effect of a magnetic field can be counted by the Peierls
substitution, kz → kz + eBy/h̄, hence ∇y = (eB/h̄)∇kz.
Applying Eq. (6.30), one obtains the induced polarization

Px =
θe2

2πh
B , (6.34)

with

θ =
1
2π

∫
BZ

dkεαβγ Tr[Aα∂βAγ − i
2
3
AαAβAγ ] , (6.35)

where (Aα)mn = i〈um|∇kα
|un〉 is the non-Abelian Berry

connection, discussed in Sec. IX. Recall that the polar-
ization is defined as the response of the total energy to an
electric field, P = ∂E/∂E, such a magnetic-field-induced
polarization implies that there is an electromagnetic cou-
pling of the form

∆LEM =
θe2

2πh
E ·B . (6.36)

This coupling, labeled “axion electrodynamics”, was dis-
cussed by Wilczek (1987). When θ = π, the correspond-
ing insulator is known as a 3D Z2 topological insual-
tor (Qi et al., 2008).

E. Spin Texture

So far our discussion has focused on the physical effects
of the Berry curvature in the momentum space (Ωkk),
or in the mixed space of the momentum coordinates and
some other parameters (Ωkr and Ωkt). In this subsection
we discuss the Berry curvatures which originate only from
the nontrivial real space configuration of the system.

One of such systems is magnetic materials with domain
walls or spin textures. Let us consider a ferromagnetic
thin films described by the following Hamiltonian

H =
p2

2m
− Jn̂(r, t) · σ , (6.37)

where the first term is the bare Hamiltonian for a con-
duction electron, and the second term is the s-d cou-
pling between the conduction electron and the local d-
electron spin along the direction n̂(r, t) with J being
the coupling strength. Note that we have allowed the
spin texture to vary in both space and time. The simple
momentum-dependence of the Hamiltonian dictates that
all k-dependent Berry curvatures vanish.

Because of the strong s-d coupling, we adopt the adi-
abatic approximation which states that the electron spin
will follow the local spin direction during its motion.
Then the spatial variation of local spin textures gives
rise to the Berry curvature field

Ωrr =
1
2

sin θ(∇θ ×∇φ) , (6.38)
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where θ and φ are the spherical angles specifying the
direction of n̂. According to Eqs. (6.9), this field acts on
the electrons as an effective magnetic field. In addition,
the time-dependence of the spin texture also gives rises
to

Ωrt =
1
2

sin θ(∂tφ∇θ − ∂tθ∇φ) . (6.39)

Similarly, Ωrt acts on the electrons as an effective electric
field. This is in analogy with a moving magnetic field
(Ωrr) generating an electric field (Ωrt).

The physical consequences of these two fields are ob-
vious by analogy with the electromagnetic fields. The
Berry curvature Ωrr will drive a Hall current, just like
the ordinary Hall effect (Bruno et al., 2004; Ye et al.,
1999). Unlike the anomalous Hall effect discussed in
Sec. III.D, this mechanism for a nonvanishing Hall ef-
fect does not require the spin-orbit coupling, but does
need a topologically nontrivial spin texture, for example,
a skyrmion. On the other hand, for a moving domain wall
in a thin magnetic wire, the Berry curvature Ωrt will in-
duce an electromotive force, which results in a voltage
difference between the two ends. This Berry curvature
induced emf has has been experimentally measured re-
cently (Yang et al., 2009).

VII. QUANTIZATION OF ELECTRON DYNAMICS

In previous sections, we have reviewed several Berry
phase effects in solid state systems. Berry curvature of-
ten appears as a result of restricting (or projecting) the
extent of a theory to its subspace. In particular, the
Berry curvature plays a crucial role in the semiclassi-
cal dynamics of electrons, which is valid under the one-
band approximation. In the following, we will explain
how could the semiclassical formulation be re-quantized.
This is necessary, for example, in studying the quan-
tized Wannier-Stark ladders from the Bloch oscillation,
or the quantized Landau levels from the cyclotron orbit
(Ashcroft and Mermin, 1976b). The re-quantized theory
is valid in the same subspace of the semiclassical theory.
It will become clear that, the knowledge of the Bloch
energy, the Berry curvature, and the magnetic moment
in the semiclassical theory constitute sufficient informa-
tion for building the re-quantized theory. In this section,
we focus on the following methods of quantization: the
Bohr-Sommerfeld quantization and the canonical quan-
tization.

A. Bohr-Sommerfeld quantization

A method of quantization is a way to select quantum
mechanically allowed states out of a continuum of clas-
sical states. This is often formulated using the general-
ized coordinates qi and their conjugate momenta pi. The

Bohr-Sommerfeld quantization requires the action inte-
gral for each set of the conjugate variables to satisfy∮

Ci

pidqi =
(
mi +

νi

4

)
h, i = 1, · · · , d, (7.1)

where Ci are closed trajectories in the phase space with
dimension 2d, mi are integers, and νi are the so-called
Maslov indices, which are usually integers. Notice that
since the choice of conjugate variables may not be unique,
the Bohr-Sommerfeld quantization method could give in-
equivalent quantization rules. This problem can be fixed
by the following Einstein-Brillouin-Keller (EBK) quanti-
zation rule.

For a completely integrable system, there are d con-
stants of motion. As a result, the trajectories in the
phase space are confined to a d-dimensional torus. On
such a torus, one can have d closed loops that are topo-
logically independent of each other (Tabor, 1989). That
is, one cannot be deformed continuously to the other.
Since

∑d
`=1 p`dq` is invariant under coordinate transfor-

mation, instead of Eq. (7.1), one can use the following
EBK quantization condition,∮

Ck

d∑
`=1

p`dq` =
(
mk +

νk

4

)
h, k = 1, · · · , d, (7.2)

where Ck are periodic orbits on invariant tori. Such a
formula is geometric in nature (i.e., it is coordinate inde-
pendent). Furthermore, it applies to the invariant tori of
systems that may not be completely integrable. There-
fore, the EBK formula plays an important role in quan-
tizing chaotic systems (Stone, 2005). In the following,
we will refer to both types of quantization simply as the
Bohr-Sommerfeld quantization.

In the wavepacket formulation of Bloch electrons, both
rc and qc are treated as generalized coordinates. With
the Lagrangian in Eq. (5.7), one can find their conju-
gate momenta ∂L/∂ṙc and ∂L/∂q̇c, which are equal to
h̄qc and h̄〈u|i∂u/∂qc〉 = h̄A respectively (Sundaram and
Niu, 1999). The quantization condition for an orbit with
constant energy thus becomes,∮

C

qc · drc = 2π
(
m+

ν

4
− ΓC

2π

)
, (7.3)

where ΓC ≡
∮

C
A · dqc is the Berry phase of an energy

contour C (also see Kuratsuji and Iida (1985); Wilkinson
(1984b)). Since the Berry phase is path dependent, one
may need to solve the equation self-consistently to obtain
the quantized orbits.

Before applying the Bohr-Sommerfeld quantization in
the following subsections, we would like to point out two
disadvantages of this method. First, the value of the
Maslov index is not always apparent. For example, for an
one-dimensional particle bounded by two walls, its value
would depend on the slopes of the walls (van Houten
et al., 1989). In fact, a non-integer value may give a more
accurate prediction of the energy levels (Friedrich and
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Trost, 1996). Second, this method fails if the trajectory
in phase space is not closed, or if the dynamic system
is chaotic and invariant tori fail to exist. On the other
hand, the method of canonical quantization in Sec. VII.D
does not have these problems.

B. Wannier-Stark ladder

Consider an electron moving in a one-dimensional pe-
riodic lattice with lattice constant a. Under a weak
uniform electric field E, according to the semiclassical
equations of motion, the quasi-momentum of an electron
wavepacket is simply (see Eq. (5.8))

h̄qc(t) = −eEt. (7.4)

It takes the time TB = h/(eEa) for the electron to tra-
verse the first Brillouin zone. Therefore, the angular fre-
quency of the periodic motion is ωB = eEa/h̄. This
is the so-called Bloch oscillation (Ashcroft and Mermin,
1976b).

Similar to a simple harmonic oscillator, the energy
of the oscillatory electron is quantized in multiples of
h̄ωB . However, unlike the former, the Bloch oscillator
has no zero-point energy (that is, the Maslov index is
zero). These equally spaced energy levels are called the
Wannier-Stark ladders. Since the Brillouin zone is peri-
odic, the electron orbit is closed. According to the Bohr-
Sommerfeld quantization, one has∮

Cm

rc · dqc = −2π
(
m− ΓCm

2π

)
. (7.5)

For a simple one-dimensional lattice with inversion sym-
metry, if the origin is located at a symmetric point, then
the Berry phase ΓCm can only have two values, 0 or π
(Zak, 1989b), as discussed earlier in Sec. II.C.

Starting from Eq. (7.5), it is not difficult to find the
average position of the electron,

〈rc〉m = a

(
m− ΓC

2π

)
, (7.6)

where we have neglected the subscript m in ΓCm
since all

of the paths in the same energy band have the same Berry
phase here. Such average positions 〈rc〉m are the average
positions of the Wannier function (Vanderbilt and King-
Smith, 1993). Due to the Berry phase, they are displaced
from the positive ions located at am.

In Sec. II.C, the electric polarization is derived using
the theory of adiabatic transport. It can also be ob-
tained from the expectation value of the position op-
erator directly. Because of the charge separation men-
tioned above, the one-dimensional crystal has a polar-
ization ∆P = eΓc/2π (compared to the state without
charge separation), which is the electric dipole per unit
cell. This is consistent with the result in Eq. (2.28).

After time average, the quantized energies of the elec-
tron wavepacket are,

〈E〉m = 〈ε(qc)〉 − eE〈rc〉m

= ε0 − eEa

(
m− ΓC

2π

)
, (7.7)

which are the energy levels of the Wannier-Stark ladders.
Two short comments are in order: First, beyond the

one-band approximation, there exist Zener tunnellings
between Bloch bands. Therefore, the quantized levels
are not stationary states of the system. They should be
understood as resonances with finite life-times (Avron,
1982; Glück et al., 1999). Second, the fascinating phe-
nomenon of Bloch oscillation is not commonly observed
in laboratory for the following reason: In an usual solid,
the electron scattering time is shorter than the period
TB by several orders of magnitude. Therefore, the phase
coherence of the electron is destroyed within a tiny frac-
tion of a period. Nonetheless, with the help of a superlat-
tice that has a much larger lattice constant, the period
TB can be reduced by two orders of magnitude, which
could make the Bloch oscillation and the accompanying
Wannier-Stark ladders detectable (Mendes and Bastard,
1993). Alternatively, the Bloch oscillation and Wannier-
Stark ladders can also be realized in an optical lattice
(Ben Dahan et al., 1996; Wilkinson and Kay, 1996), in
which the atom can be coherent over a long period of
time.

C. de Haas-van Alphen oscillation

When an uniform B field is applied to a solid, the
electron would execute a cyclotron motion in both the r-
space and the k-space. From Eq. (5.25b), it is not difficult
to see that an orbit C in k-space lies on the intersection
of a plane perpendicular to the magnetic field and the
constant-energy surface (Ashcroft and Mermin, 1976b).
Without quantization, the size of an orbit is determined
by the initial energy of the electron and can be varied
continuously. One then applies the Bohr-Sommerfeld
quantization rule, as Onsager did, to quantize the size
of the orbit (Onsager, 1952). That is, only certain or-
bits satisfying the quantization rule are allowed. Each
orbit corresponds to an energy level of the electron (i.e.,
the Landau level). Such a method remains valid in the
presence of the Berry phase.

With the help of the semiclassical equation (see
Eq. (5.8)),

h̄k̇c = −eṙc ×B, (7.8)

the Bohr-Sommerfeld condition in Eq. (7.3) can be writ-
ten as (notice that h̄qc = h̄kc − eA, and ν = 2),

B
2
·
∮

Cm

rc × drc =
(
m+

1
2
− ΓCm

2π

)
φ0, (7.9)
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where φ0 ≡ h/e is the flux quantum. The integral on the
left-hand side is simply the magnetic flux enclosed by the
real-space orbit (allowing a drift along the B-direction).
Therefore, the enclosed flux has to jump in steps of the
flux quantum (plus a Berry phase correction).

Similar to the Bohr atom model, in which the elec-
tron has to form a standing wave, here the total phase
acquired by the electron after one circular motion also
has to be integer multiples of 2π. Three types of phases
contribute to the total phase: (a), The Aharonov-Bohm
phase: an electron circulating a flux quantum picks up a
phase of 2π. (b), The phase lag of π at each turning point
(there are two of them). This explains why the Maslov
index is two. (c), The Berry phase intrinsic to the solid.
Therefore, Eq. (7.9) simply says that the summation of
these three phases should be equal to 2πm.

The orbit in k-space can be obtained by re-scaling
the r-space orbit in Eq. (7.9) with a linear factor of
λ2

B , followed by a rotation of ninety degrees, where
λB ≡

√
h̄/eB is the magnetic length (Ashcroft and Mer-

min, 1976b). Therefore, one has

B̂
2
·
∮

Cm

kc × dkc = 2π
(
m+

1
2
− ΓCm

2π

)
eB

h̄
. (7.10)

The size of the orbit, combined with the knowledge of
the electron energy E(kc) = ε(kc) −M · B, help deter-
mining the quantized energy levels. For an electron with
a quadratic energy dispersion (before applying the mag-
netic field), these levels are equally spaced. However,
with the Berry phase correction, which are usually dif-
ferent for different orbits, the energy levels are no longer
uniformly distributed. This is related to the discussion
in Sec. V on the relation between the density of states
and the Berry curvature (Xiao et al., 2005).

As a demonstration, we apply the quantization rule
to graphene and calculate the energies of Landau lev-
els near the Dirac point. Before applying a magnetic
field, the energy dispersion near the Dirac point is linear,
ε(k) = h̄vF k. It is known that, if the energy disper-
sion near a degenerate point is linear, then the cyclotron
orbit will acquire a Berry phase ΓC = π, independent
of the shape of the orbit (Blount, 1962b). As a result,
the 1/2 on the right hand side of Eq. (7.10) is cancelled
by the Berry phase term. According to Eq. (7.10), the
area of a cyclotron orbit is thus πk2 = 2πm eB

h̄ , m is a
non-negative integer. From which one can easily obtain
the Landau level energy εm = vF

√
2eBh̄m. The exper-

imental observation of a quantum Hall plateau at zero
energy is thus a direct consequence of the Berry phase
(Novoselov et al., 2005, 2006; Zhang et al., 2005).

In addition to point degeneracy, other types of degener-
acy in momentum space can also be a source of the Berry
phase. For example, the effect of the Berry phase gener-
ated by a line of band contact on magneto-oscillations is
studied in Mikitik and Sharlai (1999, 2004).

The discussion so far is based on the one-band approx-
imation. In reality, the orbit in one band would couple

with the orbits in other bands. As a result, the Landau
levels are broadened into mini-bands (Wilkinson, 1984a).
Similar situation occurs in a magnetic Bloch band, which
is the subject of Sec. VIII.

D. Canonical quantization (Abelian case)

In addition to the Bohr-Sommerfeld quantization, an
alternative way to quantize a classical theory is by finding
out position and momentum variables that satisfy the
following Poisson brackets,

{xi, pj} = δij . (7.11)

Afterwards, these classical canonical variables are pro-
moted to operators that satisfy the commutation rela-
tion,

[xi, pj ] = ih̄δij , (7.12)

That is, all we need to do is to substitute the Poisson
bracket {xi, pj} by the commutator [xi, pj ]/ih̄. Based on
the commutation relation, these variables can be written
explicitly using either the differential-operator represen-
tation or the matrix representation. Once this is done,
one can proceed to obtain the eigenvalues and eigenstates
of the Hamiltonian H(x,p).

Even though one can always have canonical pairs in a
Hamiltonian system, as guaranteed by the Darboux the-
orem (Arnold, 1989), in practice, however, finding them
may not be a trivial task. For example, the center-of-
mass variables rc and kc in the semiclassical dynamics
in Eq. (5.8) are not canonical variables since their Pois-
son brackets below are not of the canonical form (Duval
et al., 2006a; Xiao et al., 2005),

{ri, rj} = εijkΩk/κ, (7.13)
{ki, kj} = −εijkeBk/κ, (7.14)
{ri, kj} = (δij + eBiΩj) /κ, (7.15)

where κ ≡ 1 + eB(r) · Ω(k). In order to carry out the
canonical quantization, canonical variables of position
and momentum must be found.

The derivation of Eqs. (7.13),(7.14),(7.15) is briefly
outlined as follows: One first writes the equations of mo-
tion in Eq. (5.8) in the form of Eq. (6.13) (ξ = (r,k)).
In this case, the only non-zero Berry curvatures are
(Ω
↔

rr)ij = −εijkeBk and (Ω
↔

kk)ij = εijkΩk, whereas Ω
↔

rk

and Ω
↔

kr are zero. The Poisson bracket of two functions
in the phase space, f and g, is then defined as,

{f, g} =
(
∂f

∂ξ

)T

Γ
↔−1

(
∂g

∂ξ

)
, (7.16)

where Γ
↔

= Ω
↔
− J
↔

(see Eq. (6.14)). It is defined in such a
way that the equations of motion can be written in the
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standard form: ξ̇ = {ξ, ε}. To linear order of magnetic
field or Berry curvature, one can show that

Γ
↔−1 =

1
1 + eB ·Ω

(7.17)

×

(
Ω
↔

kk I
↔
− Ω
↔

kkΩ
↔

rr + eB ·Ω
−I
↔

+ Ω
↔

rrΩ
↔

kk − eB ·Ω Ω
↔

rr

)
.

Eqs. (7.13),(7.14),(7.15) thus follow when f and g are
identified with the components of ξ.

Let us start with two special cases. The first is a solid
with zero Berry curvature that is under the influence of a
magnetic field (Ω = 0,B 6= 0). In this case, the factor κ
in Eq. (7.14) reduces to one and the position variables
commute with each other. Obviously, if one assumes
h̄kc = p + eA(x) and requires x and p to be canon-
ical conjugate variables, then the quantized version of
Eq. (7.14) (with ih̄ inserted) can easily be satisfied. This
is the familiar Peierls substitution (Peierls, 1933).

In the second case, consider a system with Berry cur-
vature but not in a magnetic field (Ω 6= 0,B = 0). In this
case, again we have κ = 1. Now the roles of rc and kc

in the commutators are reversed. The momentum vari-
ables commute with each other, but not the coordinates.
One can apply a Peierls-like substitution to the coordi-
nate variables and write rc = x + A(q). It is not diffi-
cult to see that the commutation relations arising from
Eq. (7.13) can indeed be satisfied. After the canonical
quantization, x becomes i∂/∂q in the quasi-momentum
representation. In Blount (1962b), the position opera-
tor r in the one-band approximation acquires a correc-
tion, which is our Berry connection A. Therefore, rc can
be identified with the projected position operator PrP ,
where P projects to the energy band of interest.

When both B and Ω are nonzero, applying both of the
Peierls substitutions simultaneously is not enough to pro-
duce the correct commutation relations, mainly because
of the non-trivial factor κ there. In general, exact canon-
ical variables cannot be found easily. However, since the
semiclassical theory itself is valid to linear order of field,
we only need to find the canonical variables correct to
the same order in practice. The result is (Chang and
Niu, 2008),

rc = x + A(π) + G(π),
h̄kc = p + eA(x) + eB×A(π), (7.18)

where π = p + eA(x), and Gα(kc) ≡ (e/h̄)(A × B) ·
∂A/∂kcα. This is the generalized Peierls substitution for
systems with Berry connection A and vector potential A.
With these equations, one can verify Eqs. (7.13),(7.14),
and (7.15) to linear orders of B and Ω.

A few comments are in order: First, if a physical ob-
servable is a product of several canonical variables, the
order of the product may become a problem after the
quantization since the variables may not commute with
each other. To preserve the hermitian property of the
physical observable, the operator product needs to be

symmetrized. Second, the Bloch energy, Berry curvature,
and orbital moment of the semiclassical theory contains
sufficient information for building a quantum theory that
accounts for all physical effects to first order in external
fields. We will come back to this in Sec. IX, where the
non-Abelian generalization of the canonical quantization
method is addressed.

VIII. MAGNETIC BLOCH BANDS

The semiclassical dynamics in previous sections is valid
when the external field is weak, so that the latter can be
treated as a perturbation to the Bloch states. Such a
premise is no longer valid if the external field is so strong
that the structure of the Bloch bands is significantly al-
tered. This happens, for example, in quantum Hall sys-
tems where the magnetic field is of the order of Tesla
and a Bloch band would break into many subbands. The
translational symmetry and the topological property of
the subband are very different from those of the usual
Bloch band. To distinguish between the two, the former
is called the magnetic Bloch band (MBB).

The MBB usually carries non-zero quantum Hall con-
ductance and has a nontrivial topology. Compared to the
usual Bloch band, the MBB is a more interesting play-
ground for many physics phenomena. In fact, nontrivial
topology of magnetic Bloch state was first revealed in the
MBB (Thouless et al., 1982). In this section, we review
some basic facts of the MBB, as well as the semiclassical
dynamics of the magnetic Bloch electron when it is sub-
ject to further electromagnetic perturbation (Chang and
Niu, 1995, 1996). Such a formulation provides a clear pic-
ture of the hierarchical subbands split by the strong mag-
netic field (called the Hofstadter spectrum (Hofstadter,
1976), which could also be realized in a Bose-Einstein
condensate, e.g., see Umucalilar et al. (2008).)

A. Magnetic translational symmetry

In the presence of a strong magnetic field, one needs to
treat the magnetic field and the lattice potential on equal
footing and solve the following Schrodinger equation,{

1
2m

[p + eA(r)]2 + VL(r)
}
ψ(r) = Eψ(r), (8.1)

where VL is the periodic lattice potential. For conve-
nience of discussion, we assume the magnetic field is uni-
form along the z-axis and the electron is confined to the
x-y plane. Because of the vector potential, the Hamilto-
nian H above no longer has the lattice translation sym-
metry.

However, since the lattice symmetry of the charge den-
sity is not broken by an uniform magnetic field, one
should be able to define translation operators that dif-
fer from the usual ones only by phase factors (Lifshitz
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FIG. 12 (color online) When the magnetic flux per plaquette
is φ0/3, the magnetic unit cell is composed of three plaquettes.
The magnetic Brillouin zone is three times smaller than the
usual Brillouin zone. Furthermore, the magnetic Bloch states
are three-fold degenerate.

and Landau, 1980). First, consider a system translated
by a lattice vector a,{

1
2m

[p + eA(r + a)]2 + VL(r)
}
ψ(r + a) = Eψ(r + a),

(8.2)
where VL(r + a) = VL(r) has been used. One can write

A(r + a) = A(r) +∇f(r), (8.3)

where ∇f(r) = A(r + a) − A(r) ≡ ∆A(a). In an uni-
form magnetic field, one can choose a gauge such that A
is perpendicular to the magnetic field Bẑ, and its compo-
nents linear in x and y. As a result, ∆A is independent
of r and f = ∆A · r. The extra vector potential ∇f can
be removed by a gauge transformation,{

1
2m

[p + eA(r)]2 + VL(r)
}
ei e

h̄ fψ(r+a) = Eei e
h̄ fψ(r+a).

(8.4)
We now identify the state above as the magnetic trans-
lated state Taψ(r),

Taψ(r) = ei e
h̄ ∆A·rψ(r + a). (8.5)

The operator Ta being defined this way has the desired
property that [H,Ta]=0.

Unlike usual translation operators, magnetic transla-
tions along different directions usually do not commute.
For example, let a1 and a2 be lattice vectors, then

Ta2Ta1 = Ta1Ta2e
i e

h̄

H
A·dr, (8.6)

where
∮

A·dr is the magnetic flux going through the unit
cell defined by a1 and a2. That is, the non-commutativity
is a result of the Aharonov-Bohm phase. Ta1 commutes

with Ta2 only if the flux φ is an integer multiple of the
flux quantum φ0 = e/h.

If the magnetic flux φ enclosed by a plaquette is
(p/q)φ0, where p and q are co-prime integers, then Tqa1

would commute with Ta2 (see Fig. 12). The simultaneous
eigenstate of H, Tqa1 , and Ta2 is called a magnetic Bloch
state, and its energy the magnetic Bloch energy,

Hψnk = Enkψnk, (8.7)
Tqa1ψnk = eik·qa1ψnk, (8.8)

Ta2ψnk = eik·a2ψnk. (8.9)

Since the magnetic unit cell is q times larger than the
usual unit cell, the magnetic Brillouin zone (MBZ) has to
be q times smaller. If b1 and b2 are defined as the lattice
vectors reciprocal to a1 and a2. Then, in this example,
the MBZ is folded back q times along the b1 direction.

In addition, with the help of Eqs. (8.6) and (8.8), one
can show that the eigenvalues of the Ta2 operator for the
following translated states,

Ta1ψnk, T2a1ψnk, · · · , T(q−1)a1ψnk (8.10)

are

ei(k+b2p/q)·a2 , ei(k+2b2p/q)·a2 , · · · , ei(k+(q−1)b2p/q)·a2

(8.11)
respectively. These states are not equivalent, but have
the same energy as ψnk since [H,Ta1 ] = 0. Therefore,
the MBZ has a q-fold degeneracy along the b2 direc-
tion. Each repetition unit in the MBZ is sometimes
called a reduced magnetic Brillouin zone. More discus-
sions on the magnetic translation group can be found in
Zak (1964a,b,c).

B. Basics of magnetic Bloch band

In this subsection, we review some basic properties of
the magnetic Bloch band. This includes the pattern of
band splitting due to a quantizing magnetic field, the
phase of the magnetic Bloch state and its connection with
the Hall conductance.

The rules of band splitting are simple in two opposite
limits, which are characterized by the relative strength
between the lattice potential and the magnetic field.
When the lattice potential is much stronger than the
magnetic field, it is more appropriate to start with the
zero-field Bloch band as a reference. It was found that,
if each plaquette encloses a magnetic flux (p/q)φ0, then
each Bloch band would split to q subbands (Hatsugai and
Kohmoto, 1990; Kohmoto, 1989; Obermair and Wannier,
1976; Schellnhuber and Obermair, 1980; Wannier, 1980)
We know that if N is the total number of lattice sites on
the two dimensional plane, then the number of allowed
states in the Brillouin zone (and in one Bloch band) is
N . Since the area of the MBZ (and the number of states
within) is smaller by a factor of q, each MBB has N/q
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FIG. 13 (color online) (a) The phases of the MBS in the
reduced MBZ can be assigned using the parallel transport
conditions, first along the k1-axis, then along the paths par-
alllel to the k2-axis. (b) Hyperorbits in a reduced MBZ. Their
sizes are quantized following the Bohr-Sommerfeld quantiza-
tion condition. The orbit enclosing the largest area is indi-
cated by solid lines.

states, sharing the number of states of the original Bloch
band equally.

On the other hand, if the magnetic field is much
stronger than the lattice potential, then one should start
from the Landau level as a reference. In this case, if
each plaquette has a magnetic flux φ = (p/q)φ0, then
after turning on the lattice potential, each LL will split
to p subbands. The state counting is quite different from
the previous case: The degeneracy of the original LL is
Φ/φ0 = Np/q, where Φ = Nφ is the total magnetic flux
through the two dimensional sample. Therefore, after
splitting, each MBB again has only N/q states, the num-
ber of states in a MBZ.

Between the two limits, when the magnetic field is nei-
ther very strong nor very weak, the band splitting does
not follow a simple pattern. When the field is tuned from
weak to strong, the subbands will split, merge, and inter-
act with each other in a complicated manner, such that
in the end there are only p subbands in the strong-field
limit.

According to Laughlin’s gauge-invariance argument
(Laughlin, 1981), each of the isolated magnetic Bloch
band carries a quantized Hall conductivity (see Sec. II.B
and Sec. III.C). This is closely related to the non-
trivial topological property of the magnetic Bloch state
(Kohmoto, 1985; Morandi, 1988). Furthermore, the dis-
tribution of Hall conductivities among the split subbands

follows a very simple rule first discovered by Thouless
et al. (1982). This rule can be derived with the help of the
magnetic translation symmetry (Dana et al., 1985). We
show the derivation below following Dana et al’s analysis
since it reveals the important role played by the Berry
phase in the magnetic Bloch state.

In general, the phases of Bloch states at different k’s
are unrelated and can be defined independently. 14 How-
ever, the same does not apply to a MBZ. For one thing,
the phase has to be non-integrable in order to account
for the Hall conductivity. One way to assign the phase
of the MBS uk(r) is by imposing the parallel-transport
condition (see Thouless’s article in Prange and Girvin
(1987)), 〈

uk10

∣∣∣∣ ∂∂k1

∣∣∣∣uk10

〉
= 0; (8.12)〈

uk1k2

∣∣∣∣ ∂∂k2

∣∣∣∣uk1k2

〉
= 0. (8.13)

The first equation defines the phase of the states on the
k1-axis; the second equation defines the phase along a line
with fixed k1 (see Fig. 13(a)). As a result, the phases of
any two states in the MBZ have a definite relation.

The states on opposite sides of the MBZ boundaries
represent the same physical state. Therefore, they can
only differ by a phase factor. Following Eqs. (8.12) and
(8.13), we have

uk1+b1/q,k2 = uk1,k2 ; (8.14)

uk1,k2+b2 = eiδ(k1)uk1,k2 , (8.15)

where b1 and b2 are the lengths of the primitive vectors
reciprocal to a1,a2. That is, the states on the opposite
sides of the k1 boundaries have the same phase. The same
cannot also be true for the k2 boundaries, otherwise the
topology will be too trivial to accommodate the quantum
Hall conductivity.

Periodicity of the MBZ requires that

δ(k1 + b1/q) = δ(k1) + 2π × integer. (8.16)

In order for the integral (1/2π)
∮

∂MBZ
dk ·A(k) (which is

nonzero only along the upper horizontal boundary) to be
the Hall conductivity σH (in units of h/e2), the integer
in Eq. (8.16) obviously has to be equal to σH .

Following the periodicity condition in Eq. (8.16), it is
possible to assign the phase in the form,

δ(k1) = δ̃(k1) + σHk1qa1, (8.17)

where δ̃(k1 + b1/q) = δ̃(k1). On the other hand, from
the discussion at the end of the previous subsection, we
know that

Ta1uk1k2 = eiθ(k1)uk1k2+2πp/qa2 . (8.18)

14 In practice, the phases are usually required to be continuous and
differentiable, so that the Wannier function can behave well.
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Again from the periodicity of the MBZ, one has

θ(k1 + b1/q) = θ(k1) + 2πm;m ∈ Z, (8.19)

which gives

θ(k1) = θ̃(k1) +mk1qa1. (8.20)

Choose δ̃(k1) and θ̃(k1) to be zero, one finally gets

Tqa1uk1k2 = eiqmk1qa1uk1k2+2πp/a2

= eiqmk1qa1eipσHk1qa1uk1k2 . (8.21)

But this state should also be equal to eiqk1a1uk1k2 . There-
fore, the Hall conductivity should satisfy

pσH + qm = 1. (8.22)

This equation determines the Hall conductivity (mod q)
of a MBB (Dana et al., 1985). In Sec. VIII.D, we will see
that the semiclassical analysis can also help us finding
out the Hall conductivity of a MBB.

C. Semiclassical picture: hyperorbits

When a weak magnetic field is applied to a Bloch band,
the electron experiences a Lorentz force and executes a
cyclotron motion on the surface of the Fermi sea. In the
case of the MBB, the magnetic field B0 changes the band
structure itself. On the other hand, the magnetic quasi-
momentum h̄k is a good quantum number with h̄k̇ = 0.
Therefore, there is no cyclotron motion of k (even though
there is a magnetic field B0 ). Similar to the case of the
Bloch band, one can construct a wavepacket out of the
magnetic Bloch states, and study its motion in both r and
k spaces when it is subject to an additional weak elec-
tromagnetic field E and δB. The semiclassical equations
of motion that is valid under the one-band approxima-
tion have exactly the same form as Eq. (5.8). One sim-
ply needs to reinterpret h̄k, E0(k), and B in Eq. (5.8)
as the magnetic momentum, the magnetic band energy,
and the extra magnetic field δB respectively (Chang and
Niu, 1995, 1996). As a result, when δB is not zero, there
exists similar circulating motion in the MBB. This type
of orbit will be called “hyperorbit”.

Let us first consider the case without the electric field
(the case with both E and δB will be considered in the
next subsection). By combining the following two equa-
tions of motion (Cf. Eq. (5.8)),

h̄k̇ = −eṙ× δB; (8.23)

h̄ṙ =
∂E

∂k
− h̄k̇×Ω, (8.24)

one has,

h̄k̇ = − 1
κ

∂E

∂k
× δB

e

h̄
, (8.25)

where κ(k) = 1 + Ω(k)δBe/h̄. This determines the
k-orbit moving along a path with constant E(k) =
E0(k)−M(k) ·δB, which is the magnetic Bloch band en-
ergy shifted by the magnetization energy. Similar to the
Bloch band case, it is not difficult to see from Eq. (8.23)
that the r-orbit is simply the k-orbit rotated by π/2 and
(linearly) scaled by the factor h̄/eδB. These orbits in the
MBB and their real-space counterparts are the hyperor-
bits mentioned above (Chambers, 1965).

The size of a real-space hyperorbit may be very large
(if phase coherence can be maintained during the circula-
tion) since it is proportional to the inverse of the residual
magnetic field δB. Furthermore, since the split magnetic
subband is narrower and flatter than the original Bloch
band, the electron group velocity is small. As a result,
the frequency of the hyperorbit motion can be very low.
Nevertheless, it is possible to detect the hyperorbit us-
ing, for example, resonant absorption of ultrasonic wave
or conductance oscillation in an electron focusing device.

Similar to the cyclotron orbit, the hyperorbit motion
can also be quantized using the Bohr-Sommerfeld quan-
tization rule (see Eq. (7.3)). One only needs to bear
in mind that k is confined to the smaller MBZ and the
magnetic field in Eq. (7.3) should be δB. After the quan-
tization, there can only be a finite number of hyperorbits
in the MBZ. The area of the largest hyperorbit should be
equal to or slightly smaller (assuming δB � B0 so that
the number of hyperorbits is large) than the area of the
MBZ (2π/a)2/q (see Fig. 13(b)). For such an orbit, the
Berry phase correction Γ/2π in Eq. (7.3) is very close to
the integer Hall conductivity σH of the MBB. Therefore,
it is not difficult to see that the number of hyperorbits
should be |1/(qδφ) + σH |, where δφ ≡ δBa2/φ0 is the
residual flux per plaquette.

Because the MBZ is q-fold degenerate (see
Sec. VIII.A), the number of energy levels produced
by these hyperorbits are (Chang and Niu, 1995)

D =
|1/(qδφ) + σH |

q
. (8.26)

If one further takes the tunnelling between degenerate hy-
perorbits into account (Wilkinson, 1984a), then each en-
ergy level will be broadened into an energy band. These
are the magnetic energy subbands at a finer energy scale
compared to the original MBB.

D. Hall conductivity of hyperorbit

According to Laughlin’s argument, each of the isolated
subband should have its own integer Hall conductivity.
That is, as a result of band splitting, the integer Hall
conductivity σH of the parent band is split to a distri-
bution of integers σr (there are q of them). The sum of
these integers should be equal to the original Hall con-
ductivity: σH =

∑
r σr. There is a surprisingly simple

way to determine this distribution using the semiclassical
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formulation: one only needs to study the response of the
hyperorbit to an electric field.

After adding a term −eE to Eq. (8.23), one obtains,

ṙ =
h̄

eδB
k̇× ẑ +

E× ẑ

δB
. (8.27)

For a closed orbit, this is just a cyclotron motion super-
imposed with a drift along the E × δB direction. After
time average, the former does not contribute to a net
transport. Therefore the Hall current density for a filled
magnetic band in a clean sample is,

JH = −e
∫

MBZ

d2k
(2π)2

ṙ = −eρE× ẑ

δB
, (8.28)

where ρ is the number of states in the MBZ divided by the
sample area. Therefore, the Hall conductivity is σclose

r =
eρ/δB. If the areal electron density of a sample is ρ0,
then after applying a flux φ = p/q per plaquette, the
MBZ shrinks by q times and ρ = ρ0/q.

How can one be sure that both the degeneracy in
Eq. (8.26) and the Hall conductivity σclose

r are integers?
This is closely related to the following question: How
does one divide an uniform magnetic field B into the
quantizing part B0 and the perturbation δB? The proper
way to separate them was first proposed by Azbel (1964).
Since then, such a recipe has been used widely in the
analysis of the Hofstadter spectrum (Hofstadter, 1976).

One first expands the flux φ = p/q(< 1) as a continued
fraction,

p

q
=

1

f1 +
1

f2 +
1

f3 +
1
· · ·

≡ [f1, f2, f3, · · · ], (8.29)

then the continued fraction is truncated to obtain various
orders of approximate magnetic flux. For example, φ1 =
[f1] ≡ p1/q1, φ2 = [f1, f2] ≡ p2/q2, φ3 = [f1, f2, f3] ≡
p3/q3, ... etc. What is special about these truncations is
that pr/qr is the closest approximation to p/q among all
fractions with q ≤ qr (Khinchin, 1964).

As a reference, we show two identities that will be used
below:

qr+1 = fr+1qr + qr−1, (8.30)
pr+1qr − prqr+1 = (−1)r. (8.31)

According to desired accuracy, one chooses a particular
φr to be the quantizing flux, and takes δφr ≡ φr+1 − φr

as a perturbation. With the help of Eq. (8.31) one has

δφr =
(−1)r

qrqr+1
. (8.32)

As a result, the Hall conductivity for a closed hyper-
orbit produced by δBr−1 ≡ δφr−1/a
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FIG. 14 A parent magnetic Bloch band at magnetic field Br

splits to Dr subbands (Dr = 5 here) due to a perturbation
δBr+1. The subbands near the band edges of the parent band
are usually originated from closed hyperorbits. The subband
in the middle is from an open hyperorbit.

ρr = ρ0/qr),

σclose
r =

eρr

δBr−1
= (−1)r−1qr−1. (8.33)

Substitute this value back to Eq. (8.26) for Dclose
r (the

number of subbands split by δφr), and use Eq. (8.30),
one has

Dclose
r =

|1/(qrδφr) + σclose
r |

qr
= fr+1. (8.34)

This is the number of subbands split from a parent band
that is originated from a closed hyperorbit. One can see
that the Hall conductivity and the number of splitting
subbands are indeed integers.

For lattices with square or triangular symmetry, there
is one, and only one, nesting (open) hyperorbit in the
MBZ (for example, see the diamond-shaped energy con-
tour in Fig. 13(b)). Because of its open trajectory, the
above analysis fails for the nesting orbit since the first
term in Eq. (8.27) also contributes to the Hall conduc-
tivity. However, since the total number of hyperorbits
in the parent band can be determined by the quantiza-
tion rule, we can easily pin down the value of σopen

r with
the help of the sum rule: σparent

H =
∑

r σr. Furthermore,
Dopen

r can be calculated from Eq. (8.26) once σopen
r is

known. Therefore, both the distribution of the σr’s and
the pattern of splitting can be determined entirely within
the semiclassical formulation. The computation in prin-
ciple can be carried out to all orders of r. Interested
readers may consult Chang and Niu (1996) and Bohm
et al. (2003) (Chap 13) for more details.

IX. NON-ABELIAN FORMULATION

In previous sections, we have considered the semiclas-
sical electron dynamics with an Abelian Berry curva-
ture. Such a formalism can be extended to the cases
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where the energy bands are degenerate or nearly degen-
erate (eg., due to spin) (Culcer et al., 2005; Shindou
and Imura, 2005) (also see Dayi (2008); Gosselin et al.
(2006); Gosselin P et al. (2007); Strinati (1978)). Because
the degenerate Bloch states have multiple components,
the Berry curvature becomes a matrix with non-Abelian
gauge structure. We will report recent progress on re-
quantizing the semiclassical theory that helps turning the
wavepacket energy into an effective quantum Hamilto-
nian (Chang and Niu, 2008). After citing the dynamics of
the Dirac electron as an example, this approach is applied
to semiconductor electrons with spin degrees of freedom.
Finally, we point out that the effective Hamiltonian is
only part of an effective theory, and that the variables in
the effective Hamiltonian are often gauge-dependent and
therefore cannot be physical varaibles. In order to have
a complete effective theory, one also needs to identify the
correct physical variables relevant to experiments.

A. Non-Abelian electron wavepacket

The wavepacket in an energy band with D-fold de-
generacy is a superposition of the Bloch states ψnq (Cf.
Sec. IV),

|W 〉 =
D∑

n=1

∫
d3qa(q, t)ηn(q, t)|ψnq〉, (9.1)

where
∑

n |ηn(q, t)|2 = 1 at each q, and a(q, t) is a nor-
malized distribution that centers at qc(t). Furthermore,
the wavepacket is built to be localized at rc in the r-
space. One can first obtain an effective Lagrangian for
the wavepacket variables rc, qc, and ηn, then derive their
dynamical equations of motion. Without going into de-
tails, we only review primary results of such an investi-
gation (Culcer et al., 2005).

Similar to the non-degenerate case, there are three
essential quantities in such a formulation. In addition
to the Bloch energy E0(q), there are the Berry curva-
ture and the magnetic moment of the wavepacket (see
Sec. IV). However, because of the spinor degree of free-
dom, the latter two become vector-valued matrices, in-
stead of the usual vectors. The Berry connection be-
comes,

Rmn(q) = i

〈
umq|

∂unq

∂q

〉
. (9.2)

In the rest of this section, (boldfaced) calligraphic fonts
are reserved for (vector-valued) matrices. Therefore, the
Berry connection in Eq. (9.2) can simply be written as
R.

The Berry curvature is defined as,

F(q) = ∇q ×R− iR×R. (9.3)

Recall that the Berry connection and Berry curvature in
the Abelian case have the same mathematical structures

as the vector potential and the magnetic field in electro-
magnetism. Here, R and F also have the same structure
as the gauge potential and gauge field in the non-Abelian
SU(2) gauge theory (Wilczek and Zee, 1984). Redefining
the spinor basis {ψnq} amounts to a gauge transforma-
tion. Assuming that the new basis is obtained from the
old basis by a gauge transformation U , then R and F
would change in the following way:

R′ = URU† + i
∂U

∂λ
U†,

F ′ = UFU†, (9.4)

where λ is the parameter of adiabatic change.
The magnetic moment of the wavepacket can be found

in Eq. (4.6). If the wavepacket is narrowly distributed
around qc, then it is possible to write it as the spinor
average of the following quantity (Culcer et al., 2005),

Mnl(qc) = −i e
2h̄

〈
∂un

∂qc

∣∣∣× [H̃0 − E0(qc)
]∣∣∣ ∂ul

∂qc

〉
,

(9.5)
where H̃0 ≡ e−iq·rH0e

iq·r. That is, M = 〈M〉 =
η†Mη =

∑
nl η

∗
nMnlηl. Except for the extension to mul-

tiple components, the form of the magnetic moment re-
mains the same as its Abelian counterpart (see Eq. (4.6)).

As a reference, we write down the equations of motion
for the non-Abelian wavepacket (Culcer et al., 2005):

h̄k̇c = −eE− eṙc ×B, (9.6)

h̄ṙc =
〈[

D
Dkc

,H
]〉

− h̄k̇c × F, (9.7)

ih̄η̇ =
(
−M ·B− h̄k̇c ·R

)
η, (9.8)

where kc = qc +(e/h̄)A(rc), F = 〈F〉, and the covariant
derivative D/Dkc ≡ ∂/∂kc − iR. Again the calligraphic
fonts represent matrices. A spinor average (represented
by the angular bracket) is imposed on the commutator
of D/Dkc and H. The semiclassical Hamiltonian matrix
inside the commutator in Eq. (9.7) is

H(rc,kc) = E0(kc)− eφ(rc)−M(kc) ·B. (9.9)

The spinor-averaged Hamiltonian matrix is nothing but
the wavepacket energy, E = 〈H〉. Like the Abelian case,
it has three terms: the Bloch energy, the electrostatic
energy, and the magnetization energy.

Compared to the Abelian case in Eq. (5.8), the k̇c-
equation also has the electric force and the Lorentz
force. The ṙc-equation is slightly more complicated: The
derivative in the group velocity ∂E/∂kc is replaced by
the commutator of the covariant derivative and H. The
anomalous velocity in Eq. (9.7) remains essentially the
same. One only needs to replace the Abelian Berry cur-
vature with the spinor average of the non-Abelian one.

Equation (9.8) governs the dynamics of the spinor,
from which we can derive the equation for the spin vector
J̇, where J = 〈J 〉, and J is the spin matrix,

ih̄J̇ =
〈[

J ,H− h̄k̇c ·R
]〉
. (9.10)
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The spin dynamics in Eq. (9.10) is influenced by the Zee-
man energy in H, as it should be. However, the signifi-
cance of the other term that is proportional to the Berry
connection is less obvious here. Later we will see that it
is in fact the spin-orbit coupling.

B. Spin Hall effect

The anomalous velocity in Eq. (9.7) that is propor-
tional to the Berry curvature F is of great physical signif-
icance. We have seen earlier that it is the transverse cur-
rent in the quantum Hall effect and the anomalous Hall
effect (Sec. III). The latter requires electron spin with
spin-orbit coupling and therefore the carrier dynamics is
suitably described by Eqs. (9.6), (9.7) and (9.10).

For the non-Abelian case, the Berry curvature F is of-
ten proportional to the spin S (see Secs. IX.D and IX.E).
If this is true, then in the presence of an electric field,
the anomalous velocity is proportional to E×S. That is,
the trajectories of spin-up and spin-down electrons are
parted toward opposite directions transverse to the elec-
tric field. There can be a net transverse current if the
populations of spin-up and spin-down electrons are dif-
ferent, as in the case of a ferromagnet. This then leads
to the anomalous Hall effect.

If the populations of different spins are equal, then the
net electric Hall current is zero. However, the spin Hall
current can still be nonzero. This is the source of the in-
trinsic spin Hall effect (SHE) in semiconductors predicted
by Murakami et al. (2003). In the original proposal, a
four-band Luttinger model is used to describe the heavy-
hole (HH) bands and light-hole (LH) bands. The Berry
curvature emerges when one restricts the whole Hilbert
space to a particular (HH or LH) subspace. As we shall
see in Sec. IX.E, such a projection of the Hilbert space
almost always generates a Berry curvature. Therefore,
the SHE should be common in semiconductors or other
materials. Indeed, intrinsic SHE has also been theoreti-
cally predicted in metals (Guo et al., 2008). The analysis
of the SHE from the semiclassical point of view can also
be found in Culcer et al. (2005).

In addition to the Berry curvature, impurity scattering
is another source of the (extrinsic) SHE. This is first pre-
dicted by Dyakonov and Perel (1971a,b) (also see Chaza-
lviel (1975)) and the same idea is later revived by Hirsch
(1999). Because of the spin-orbit coupling between the
electron and the (spinless) impurity, the scattering am-
plitude is not symmetric with respect to the transverse
direction. This is the same skew scattering (or Mott scat-
tering) in AHE (see Sec. III.D.1).

To date, most of the experimental evidences for the
SHE belong to the extrinsic case. They are first observed
in semiconductors (Kato et al., 2004; Sih et al., 2005;
Wunderlich et al., 2005), and later in metals (Kimura
et al., 2007; Seki et al., 2008; Valenzuela and Tinkham,
2006). The spin Hall conductivity in metals can be de-
tected at room temperature and can be several orders

of magnitude larger than that in semiconductors. Such
a large effect could be due to the resonant Kondo scat-
tering from the Fe impurities (Guo et al., 2009). This
fascinating subject is currently in rapid progress. Com-
plete understanding of the intrinsic or extrinsic SHE is
crucial to future devices that could generate a significant
amount of spin current.

C. Quantization of electron dynamics

In Sec. VII, we have introduced the Bohr-Sommerfeld
quantization, which helps predicting quantized energy
levels. Such a procedure applies to the Abelian case and
is limited to closed orbits in phase space. In this subsec-
tion, we report on the method of canonical quantization
that applies to more general situations. With both the
semiclassical theory and the method of re-quantization at
hand, one can start from a quantum theory of general va-
lidity (such as the Dirac theory of electrons) and descend
to an effective quantum theory with a smaller range of
validity. Such a procedure can be applied iteratively to
generate a hierarchy of effective quantum theories.

As we have mentioned in Sec. VII.D, even though a
Hamiltonian system always admits canonical variables,
it is not always easy to find them. In the wavepacket
theory, the variables rc and kc have very clear physi-
cal meaning, but they are not canonical variables. The
canonical variables r and p accurate to linear order of
the fields are related to the center-of-mass variables as
follows (Chang and Niu, 2008),

rc = r + R(π) + G(π),
h̄kc = p + eA(r) + eB×R(π), (9.11)

where π = p + eA(r), and Gα(π) ≡ (e/h̄)(R × B) ·
∂R/∂πα. This is a generalization of the Peierls substi-
tution to the non-Abelian case. The last terms in both
equations can be neglected in some occasions. For ex-
ample, they will not change the force and the velocity in
Eqs. (9.6) and (9.7).

When expressed in the new variables, the semiclassical
Hamiltonian in Eq. (9.9) can be written as,

H(r,p) = E0(π)− eφ(r) + eE ·R(π)

− B ·
[
M(π)− eR× ∂E0

∂π

]
, (9.12)

where we have used the Taylor expansion and neglected
terms nonlinear in fields. Finally, one promotes the
canonical variables to quantum conjugate variables and
convert H to an effective quantum Hamiltonian.

Compared to the semiclassical Hamiltonian in
Eq. (9.9), the quantum Hamiltonian has two additional
terms from the Taylor expansion. The dipole-energy
term eE · R is originated from the shift between the
charge center rc and the center of the canonical vari-
able r. Although the exact form of the Berry connection
R depends on the physical model, we will show that for
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both the Dirac electron (IX.D) and the semiconductor
electron (IX.E), the dipole term is closely related to the
spin-orbit coupling. The correction to the Zeeman en-
ergy is sometimes called the Yafet term, which vanishes
near a band edge (Yafet, 1963).

Three remarks are in order. First, the form of the
Hamiltonian, especially the spin-orbit term and Yafet
term, is clearly gauge dependent because of the gauge-
dependent Berry connection. Such gauge dependence has
prevented one from assigning a clear physical significance
to the Yafet term. For that matter, it is also doubtful
that the electric dipole, or the spin-orbit energy can be
measured independently. Second, in a neighborhood of
a k-point, one can always choose to work within a par-
ticular gauge. However, if the first Chern number (or
its non-Abelian generalization) is not zero, one cannot
choose a global gauge in which R is smooth everywhere
in the Brillouin zone. In such a non-trivial topological
situation, one has to work with patches of the Brillouin
zone for a single canonical quantum theory. Third, the
semiclassical theory based on the variables F and M,
on the other hand, is gauge independent. Therefore, the
effective quantum theory can be smooth globally.

D. Dirac electron

To illustrate the application of the non-Abelian
wavepacket theory and its re-quantization, we use the
Dirac electron as an example. The starting quantum
Hamiltonian is

H = cα · (p + eA) + βmc2 − eφ(r)
= H0 + ceα ·A− eφ(r), (9.13)

where α and β are the Dirac matrices (Strange, 1998)
and H0 is the free-particle Hamiltonian. The energy
spectrum of H0 has positive-energy branch and negative-
energy branch, each with two-fold degeneracy due to the
spin. This two branches are separated by a huge energy
gap mc2. One can construct a wavepacket out of the
positive-energy eigenstates and study its dynamics un-
der the influence of an external field. The size of the
wavepacket can be as small as the Compton wavelength
λc = h̄/mc (but not smaller), which is two orders of mag-
nitude smaller than the Bohr radius. Therefore, the adia-
batic condition on the external electromagnetic field can
be easily satisfied: the spatial variation of the potential
only needs to be much smoother than λc. In this case,
even the lattice potential in a solid can be considered
as a semiclassical perturbation. Furthermore, because of
the huge gap between branches, interbranch tunnelling
happens (and the semiclassical theory fails) only if the
field is so strong that electron-positron pair-production
can no longer be ignored.

Since the wavepacket is living on a branch with two-
fold degeneracy, the Berry connection and curvature are

2× 2 matrices (Chang and Niu, 2008),

R(q) =
λ2

c

2γ(γ + 1)
q× σ, (9.14)

F(q) = − λ2
c

2γ3

(
σ + λ2

c

q · σ
γ + 1

q
)
, (9.15)

where γ(q) ≡
√

1 + (h̄q/mc)2 is the relativistic dilation
factor. To calculate these quantities, we only need the
free particle eigenstates of H0 (see Eqs. (9.2) and (9.3)).
That is, the non-trivial gauge structure exists in the free
particle already.

It may come as a big surprise that the free wavepacket
also possess an intrinsic magnetic moment. Straightfor-
ward application of Eq. (9.5) gives (Chuu et al., 2009),

M(q) = − eh̄

2mγ2

(
σ + λ2

c

q · σ
γ + 1

q
)
. (9.16)

This result agrees with the one calculated from the ab-
stract spin operator Ŝ in the Dirac theory (Chuu et al.,
2009),

M(q) = −g eh̄

2mγ(q)
〈W |Ŝ|W 〉, (9.17)

in which the g-factor is two. The Zeeman coupling in
the wavepacket energy is −M ·B. Therefore, this mag-
netic moment gives the correct magnitude of the Zeeman
energy with the correct g-factor. Recall that Eq. (9.5)
is originated from Eq. (4.6), which is the magnetic mo-
ment due to a circulating charge current. Therefore, the
magnetic moment here indeed is a result of the spinning
wavepacket.

The present approach is a revival of Uhlenbeck and
Goudsmit’s rotating sphere model of the electron spin
but without its problem. The size of the wavepacket
λc constructed from the positive-energy states is two or-
ders of magnitude larger than the classical electron radius
e2/mc2. Therefore, the wavepacket does not have to ro-
tate faster than the speed of light to have the correct
magnitude of spin. This semiclassical model for spin is
certainly very pleasing since it gives a clear and heuris-
tic picture of the electron spin. Also, one does not have
to resort to the more complicated Foldy-Wouthuysen ap-
proach to extract the spin from the Dirac Hamiltonian
(Foldy and Wouthuysen, 1950).

From the equation of motion in Eq. (9.10), one obtains

〈σ̇〉 =
e

γm

[
B + E× h̄kc

(γ + 1)mc2

]
× 〈σ〉. (9.18)

This is the Bargmann-Michel-Telegdi (BMT) equation
for a relativistic electron (Bargmann et al., 1959). More
discussions on the equations of motion for rc and kc can
be found in Chang and Niu (2008).

Finally, substituting the Berry connection and the
magnetic moment into Eq. (9.12) and using E0(π) =
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FIG. 15 (color online) Schematic plot of the semiconductor
band structure near the fundamental gap. The wavepacket in
the conduction band is formed from a two-component spinor.

√
c2π2 +m2c4, one can obtain the effective quantum

Hamiltonian,

H(r,p) = γ(π)mc2 − eφ(r) +
µB

γ(γ + 1)
π

mc2
× σ ·E

+
µB

γ
σ ·B, (9.19)

in which all the γ’s are functions of π and µB = eh̄/2m.
This is the relativistic Pauli Hamiltonian. At low ve-
locity, γ ' 1, and it reduces to the more familiar form.
Notice that the spin-orbit coupling comes from the dipole
energy term with the Berry connection, as we have
mentioned earlier (also see Mathur (1991); Shankar and
Mathur (1994)).

E. Semiconductor electron

When studying the transport properties of semicon-
ductors, one often only focus on the carriers near the
fundamental gap at the Γ-point. In this case, the band
structure far away from this region is not essential. It is
then a good approximation to use the k ·p expansion and
obtain the 4-band Luttinger model or the 8-band Kane
model (Kane, 1957; Luttinger, 1951; Winkler, 2003) to
replace the more detailed band structure (see Fig. 15).
In this subsection, we will start from the 8-band Kane
model and study the wavepacket dynamics in one of its
subspace: the conduction band. It is also possible to in-
vestigate the wavepacket dynamics in other subspaces:
the HH-LH complex or the spin-orbit split-off band. The
result of the latter is not reported in this review. Inter-
ested readers can consult Chang and Niu (2008) for more
details, including the explicit form of the Kane Hamilto-
nian that the calculations are based upon.

To calculate the Berry connection in Eq. (9.2), one
needs to obtain the eigenstates of the Kane model, which

have eight components. Similar to the positive-energy
branch of the Dirac electron, the conduction band is two-
fold degenerate. Detailed calculation shows that, to lin-
ear order in k (and up to a SU(2) gauge rotation), the
Berry connection is a 2× 2 matrix of the form,

R =
V 2

3

[
1
E2

g

− 1
(Eg + ∆)2

]
σ × k, (9.20)

where Eg is the fundamental gap, ∆ is the spin-orbit
spit-off gap, and V = h̄

m0
〈S|p̂x|X〉 is a matrix element of

the momentum operator.
As a result, the dipole term eE ·R becomes,

Hso = eE ·R = αE · σ × k, (9.21)

where α ≡ (eV 2/3)[1/E2
g − 1/(Eg + ∆)2]. The coef-

ficient α and the form of the spin-orbit coupling are
the same as the Rashba coupling (Bychkov and Rashba,
1984; Rashba, 1960). However, unlike the usual Rashba
coupling that requires structural inversion asymmetry to
generate an internal field, this term exists in a bulk semi-
conductor with inversion symmetry but requires an ex-
ternal field E.

From the Berry connection, we can calculate the Berry
curvature in Eq. (9.3) to the leading order of k as,

F =
2V 2

3

[
1
E2

g

− 1
(Eg + ∆)2

]
σ. (9.22)

In the presence of an electric field, this would generate
the transverse velocity in Eq. (9.7),

vT = 2eαE× 〈σ〉. (9.23)

As a result, spin-up and spin-down electrons move toward
opposite directions, which results in a spin-Hall effect (see
Sec. IX.B for related discussion).

The wavepacket in the conduction band also sponta-
neously rotates with respect to its own center of mass.
To the lowest order of k, it has the magnetic moment,

M =
eV 2

3h̄

(
1
Eg

− 1
Eg + ∆

)
σ. (9.24)

With these three basic quantities, R, F , and M, the
re-quantized Hamiltonian in Eq. (9.12) can be established
as

H(r,p) = E0(π)−eφ(r)+αE·σ×π+δgµBB· h̄σ
2
, (9.25)

where E0 includes the Zeeman energy from the bare spin
and

δg = −4
3
mV 2

h̄2

(
1
Eg

− 1
Eg + ∆

)
. (9.26)

In most textbooks on solid state physics, one can find
this correction of the g-factor. However, a clear identifi-
cation with electron’s angular momentum is often lack-
ing. In the wavepacket formulation, we see that δg is
indeed originated from the electron’s spinning motion.
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F. Incompleteness of effective Hamiltonian

Once the effective HamiltonianH(r,p) is obtained, one
can go on to study its spectra and states, without re-
ferring back to the original Hamiltonian. Based on the
spectra and states, any physics observables of interest can
be calculated. These physics variables may be position,
momentum, or other related quantities. Nevertheless, we
would like to emphasize that, the canonical variables in
the effective Hamiltonian may not be physical observ-
ables. They may differ, for example, by a Berry connec-
tion in the case of the position variable. The effective
Hamiltonian itself is not enough for correct prediction, if
the physical variables have not been identified properly.

This is best illustrated using the Dirac electron as an
example. At low velocity, the effective Pauli Hamiltonian
is (see Eq. (9.19)),

H(r,p) =
π2

2m
− eφ(r) +

µB

2
π

mc2
× σ ·E

+ µBσ ·B, (9.27)

which is a starting point of many solid-state calculations.
It is considered accurate for most of the low-energy appli-
cations in solid state. When one applies an electric field,
then according to the Heisenberg equation of motion, the
velocity of the electron is

ṙ =
π

m
+
eλ2

c

4h̄
σ ×E, (9.28)

where λc is the Compton wavelength.
However, if one calculates the velocity of a Dirac elec-

tron according to Eq. (9.7), then the result is,

ṙc =
h̄k
m

+
eλ2

c

2h̄
〈σ〉 ×E. (9.29)

That is, the transverse velocity is larger by a factor of
two. The source of this discrepancy can be traced back
to the difference between the two position variables: rc

and r (see Eq. (9.11)). One should regard the equation
for ṙc as the correct one since it is based on the Dirac
theory (also see Bliokh (2005)).

Such a discrepancy between the same physical vari-
able in different theories can also be understood from
the perspective of the Foldy-Wouthuysen transformation.
The Pauli Hamiltonian can also be obtained from block-
diagonalizing the Dirac Hamiltonian using an unitary
transformation. Since the basis of states has been ro-
tated, the explicit representations of all of the observ-
ables should be changed as well. For example, the rc in
Eq. (9.11) can be obtained by a FW rotation, followed by
a projection to the positive-energy subspace (Foldy and
Wouthuysen, 1950).

G. Hierarchy structure of effective theories

Finally, we report on the hierarchical relations for the
basic quantities, the Berry curvature F and the mag-

wavepacket
space (III)

parent 
space (II)

full   
space (I)

FIG. 16 The extent of wavepacket space, parent space, and
full space.

netic moment M. Let us consider theories on three dif-
ferent levels of hierarchy – I, II, and III – with progres-
sively smaller and smaller Hilbert spaces. These spaces
will be called the full space, the parent space, and the
wavepacket space respectively (see Fig. 16).

Alternative to Eqs. (9.3) and (9.5), the Berry curvature
and the magnetic moment can be written in the following
forms (Chang and Niu, 2008),

Fmn = i
∑

l∈out

Rml ×Rln, (9.30)

Mmn =
ie

2h̄

∑
l∈out

(E0,m − E0,l)Rml ×Rln. (9.31)

where Rml is the Berry connection, and l sums over the
states outside of the space of interest. From Eqs. (9.30)
and (9.31), one sees that the Berry curvature and the
magnetic moment for theory I are zero since there is no
state outside the full space. With the help of the states
in the full space, one can calculate the Berry curvatures
and the magnetic moment in theory II and theory III.
They are designated as (Fp,Mp) and (F ,M) respec-
tively. These two sets of matrices have different ranks
since the parent space and the wavepacket space have
different dimensions.

On the other hand, if one starts from the parent space,
then the Berry curvature and the magnetic moment for
theory II is zero (instead of Fp and Mp). The Berry
curvature and the magnetic moment for theory III are
now designated as F ′ and M′. They are different from
F and M since the former are obtained from the sum-
mations with more outside states from the full space. It
is straightforward to see from Eqs. (9.30) and (9.31) that

F = F ′ + PFpP,

M = M′ + PMpP, (9.32)

where P is a dimension-reduction projection from the
parent space to the wavepacket subspace. This means
that starting from theory II, instead of theory I, as the
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parent theory, one would have the errors PFpP and
PMpP . On the other hand, however, whenever the
scope of the parent theory needs to be extended, e.g,
from II to I, instead of starting all of the calculations
anew, one only needs additional input from Fp and Mp

and the accuracy can be improved easily.
For example, in Murakami et al. (2003, 2004)’s original

proposal of the spin Hall effect of holes, the parent space
is the HH-LH complex. The heavy hole (or the light
hole) acquires a non-zero Berry curvature as a result of
the projection from this parent space to the HH band (or
the LH band). This Berry curvature corresponds to the
F ′ above. It gives rise to a spin-dependent transverse
velocity eE×F ′ that is crucial to the spin Hall effect.

Instead of the HH-LH complex, if one chooses the eight
bands in Fig. 15 as the full space, then the Berry curva-
tures of the heavy hole and the light hole will get new
contributions from PFpP . The projection from the full
space with eight bands to the HH-LH complex of four
bands generates a Berry curvature Fp = −(2V 2/3E2

g)J
(Chang and Niu, 2008), where J is the spin-3/2 ma-
trix. Therefore, after further projections, we would
get additional anomalous velocities (eV 2/E2

g)E× σ and
(eV 2/3E2

g)E× σ for HH and LH respectively.

X. OUTLOOK

In most of the researches mentioned this review, the
Berry phase and semiclassical theory are explored in the
single-particle context. The fact that they are so useful
and that in some of the materials the manybody effect is
crucial naturally motivates one to extend this approach
to manybody regime. For example, Berry phase effect
has been explored in the density functional theory with
spin degree of freedom (Niu and Kleinman, 1998; Niu
et al., 1999). Also, Berry phase and relevant quanti-
ties are investigated in the context of Fermi-liquid theory
(Haldane, 2004). Furthermore, Berry curvature on the
Fermi surface, if strong enough, is predicted to modify
a repulsive interaction between electrons to an attrac-
tive interaction and causes pairing instability (Shi and
Niu, 2006). In addition to the artificial magnetic field
generated by the monopole of Berry curvature, a slightly
different Berry curvature involving the time-component
is predicted to generate an artificial electric field, which
would affect the normalization factor and the transverse
conductivity (Shindou and Balents, 2006). This latter
work has henceforth been generalized to multiple-band
Fermi liquid with non-Abelian Berry phase (Shindou and
Balents, 2008). Recently, the ferrotoroidic moment in
multiferroic materials is also found to be a quantum ge-
ometric phase (Batista et al., 2008). Researches along
such a path is exciting and still at its early stage.

There has been a growing number of researches on the
Berry phase effect in light-matter interaction. The Berry
curvature is responsible for a transverse shift (side jump)
of a light beam reflecting off an interface (Onoda et al.,

2004a, 2006a; Sawada and Nagaosa, 2005). The shift is of
the order of the wavelength and is a result of the conser-
vation of angular momentum. The direction of the shift
depends on the circular polarization of the incident beam.
This “optical Hall effect” can be seen as a rediscovery of
the Imbert-Federov effect (Federov, 1955; Imbert, 1972).
More detailed study of the optical transport involving
spin has also been carried out by Bliokh and other re-
searchers (Bliokh, 2006a; Bliokh and Bliokh, 2006; Duval
et al., 2006a). The similarity between the side jump of
a light beam and analogous “jump” of an electron scat-
tering off an impurity has been noticed quite early in
Berger and Bergmann’s review on anomalous Hall effect
(Chien and Westgate, 1980). In fact, the side jump of
the electromagnetic wave and the electron can be uni-
fied using similar dynamical equations. This shows that
the equation of motion approach in this review has very
general validity. Indeed, similar approach has also been
extended to the quasiparticle dynamics in Bose-Einstein
condensate (Zhang et al., 2006).

Even though the Berry curvature plays a crucial role
in the electronic structure and electron dynamics of crys-
tals, direct measurement of such a quantity is still lack-
ing. There does exist sporadic and indirect evidences
of the effect of the Berry phase or the Berry curvature
through the measurement of, for example, the quantum
Hall conductance, the anomalous Hall effect, or the Hall
plateau in graphene. However, this is just a beginning.
In this review, one can see clearly that in many circum-
stances, the Berry curvature should be as important as
the Bloch energy. Condensed matter physicists over the
years have compiled a huge database on the band struc-
tures and Fermi surfaces of all kinds of materials. It is
about time to add theoretical and experimental results of
the Berry curvature that will deepen our understanding
of material properties. There is still plenty of room in
the quasi-momentum space!
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APPENDIX A: Adiabatic Evolution

In the main text we have described the adiabatic theo-
rem to leading order. Here we present a detailed study of
the adiabatic evolution and the derivation of Eq. (2.2).

Suppose the Hamiltonian H[R(t)] depends on a set of
parameters R(t). Let us consider an adiabatic process
in which R(t) changes slowly in time. The wave func-
tion |ψ(t)〉 must satisfy the time-dependent Schrödinger
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equation

ih̄
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 . (A1)

If we expand the wave function using the instaneous
eigenstates |n(t)〉 of H(t) as

|ψ(t)〉 =
∑

n

e
− i

h̄

R t
t0

dt′ En(t′)
an(t)|n(t)〉 , (A2)

then the coefficients satisfy

ȧn(t) = −
∑

l

al(t)〈n(t)| ∂
∂t
|l(t)〉e−

i
h̄

R t
t0

dt′ [El(t
′)−En(t′)]

.

(A3)
As we discussed in Sec. I.C, the phase choice of the in-
staneous eigenstates can be arbitrary. To remove this
arbitrariness, we impose the condition of parallel trans-
port:

〈n(t)| ∂
∂t
|l(t)〉 = Ṙ(t)〈n(t)| ∂

∂R
|l(t)〉 = 0 . (A4)

As long as the path is not closed, such a choice is always
allowed.

In the limit of Ṙ → 0, we have, to zeroth order,

ȧn(t) = 0 . (A5)

Therefore if the system is initially in the nth eigenstate,
it will stay in that state afterwards. This is the quantum
adiabatic theorem. Now let us consider the first order
correction. We have an(0) = 1 and an′(0) = 0 for n′ 6= n.
For the nth state, we still have ȧn = 0, therefore an = 1.
However, for n′ 6= n,

∂

∂t
an′ = −〈n′| ∂

∂t
|n〉e−

i
h̄

R t
t0

dt′[En(t′)−En′ (t′)] . (A6)

Then, since the exponential factor oscillates while its co-
efficient slowly vary in time, we can integrate the above
equation by parts, yielding

an′ = −
〈n′| ∂

∂t |n〉
En − En′

ih̄e
− i

h̄

R t
t0

dt′ [En(t′)−En′ (t′)] . (A7)

The wave function including the first order approxima-
tion is given by

|ψ(t)〉 = e
− i

h̄

R t
t0

dt′ En(t′)
{
|n〉 − ih̄

∑
n 6=n′

|n′〉
〈n′| ∂

∂t |n〉
En − En′

}
.

(A8)
Removing the overall phase factor recovers Eq. (2.2).

In the above we have discussed the adiabatic theorem
to first order in the changing rate of the Hamiltonian.
There are interesting and more delicate adiabatic theo-
rems that go beyond all orders. We refer the readers to
(Avron and Elgart, 1998; Joye and Pfister, 1997; Klein
and Seiler, 1990; Nenciu, 1993).

References

Adams, E. N., 1952, Phys. Rev. 85, 41.
Adams, E. N., and E. I. Blount, 1959, J. Phys. Chem. Solids

10, 286.
Aharonov, Y., and D. Bohm, 1959, Phys. Rev. 115, 485.
Akhmerov, A. R., and C. W. J. Beenakker, 2007, Phys. Rev.

Lett. 98, 157003.
Arnold, V. I., 1978, Mathematical Methods of Classical Me-

chanics (Springer, New York).
Arnold, V. I., 1989, Mathematical methods of classical me-

chanics (Springer-Verlag, New York), 2nd ed. edition.
Ashcroft, N. W., and N. D. Mermin, 1976a, Solid State

Physics (Saunders).
Ashcroft, N. W., and N. D. Mermin, 1976b, Solid State

Physics (Saunders, Philadelphia).
Avron, J. E., 1982, Annals of Physics 143(1), 33 , ISSN 0003-

4916.
Avron, J. E., and A. Elgart, 1998, Commun. Math. Phys.

203, 445.
Avron, J. E., A. Elgart, G. M. Graf, and L. Sadun, 2001,

Phys. Rev. Lett. 87, 236601.
Avron, J. E., E. Elgart, G. M. Graf, and L. Sadun, 2004, J.

Stat. Phys. 116, 425.
Avron, J. E., and R. Seiler, 1985, Phys. Rev. Lett. 54, 259.
Avron, J. E., R. Seiler, and B. Simon, 1983, Phys. Rev. Lett.

51, 51.
Azbel, M. Y., 1964, Sov. Phys. JETP 19, 634.
Bargmann, V., L. Michel, and V. L. Telegdi, 1959, Phys. Rev.

Lett. 2(10), 435.
Batista, C. D., G. Ortiz, and A. A. Aligia, 2008, Phys. Rev.

Lett. 101, 077203.
Ben Dahan, M., E. Peik, J. Reichel, Y. Castin, and C. Sa-

lomon, 1996, Phys. Rev. Lett. 76(24), 4508.
Berger, L., 1970, Phys. Rev. B 2, 4559.
Berger, L., 1972, Phys. Rev. B 5, 1862.
Berry, M. V., 1984, Proc. R. Soc. London Ser. A 392, 45.
Bird, D. M., and A. R. Preston, 1988, Phys. Rev. Lett. 61,

2863.
Bliokh, K. Y., 2005, EPL (Europhysics Letters) 72(1), 7.
Bliokh, K. Y., 2006a, Physical Review Letters 97(4), 043901.
Bliokh, K. Y., 2006b, Phys. Lett. A 351, 123.
Bliokh, K. Y., and Y. P. Bliokh, 2006, Physical Review Letters

96(7), 073903.
Bliokh, K. Y., A. Niv, V. Kleiner, and E. Hasman, 2008, Nat.

Photon 2, 748.
Blount, E. I., 1962a, Phys. Rev. 126, 1636.
Blount, E. I., 1962b, Solid State Physics, volume 13 (Aca-

demic Press Inc., New York).
Bohm, A., A. Mostafazadeh, H. Koizumi, Q. Niu, and

J. Zwanziger, 2003, The Geometric Phase in Quantum
Systems: Foundations, Mathematical Concepts, and Ap-
plications in Molecular and Condensed Matter Physics
(Springer-Verlag, Berlin).

Brouwer, P. W., 1998, Phys. Rev. B 58, R10135.
Brown, E., 1967, Phys. Rev. 166, 626.
Bruno, P., V. K. Dugaev, and M. Taillefumier, 2004, Phys.

Rev. Lett. 93, 096806.
Bychkov, Y., and E. Rashba, 1984, JETP Lett. 39, 78.
Ceresoli, D., T. Thonhauser, D. Vanderbilt, and R. Resta,

2006, Phys. Rev. B 74, 024408.
Chambers, W., 1965, Phys. Rev. 140, A135.
Chang, M.-C., and Q. Niu, 1995, Phys. Rev. Lett. 75, 1348.



47

Chang, M.-C., and Q. Niu, 1996, Phys. Rev. B 53, 7010.
Chang, M.-C., and Q. Niu, 2008, Journal of Physics: Con-

densed Matter 20, 193202.
Chazalviel, J.-N., 1975, Phys. Rev. B 11(10), 3918.
Cheong, S.-W., and M. Mostovoy, 2007, Nat. Mater. 6, 13.
Chien, C. L., and C. R. Westgate (eds.), 1980, The Hall Effect

and Its Application (Plenum, New York).
Chun, S. H., Y. S. Kim, H. K. Choi, I. T. Jeong, W. O. Lee,

K. S. Suh, Y. S. Oh, K. H. Kim, Z. G. Khim, J. C. Woo,
and Y. D. Park, 2007, Phys. Rev. Lett. 98, 026601.

Chuu, C., M.-C. Chang, and Q. Niu, 2009, to be published.
Cooper, N. R., B. I. Halperin, and I. M. Ruzin, 1997, Phys.

Rev. B 55, 2344.
Culcer, D., A. MacDonald, and Q. Niu, 2003, Phys. Rev. B

68, 045327.
Culcer, D., J. Sinova, N. A. Sinitsyn, T. Jungwirth, A. H.

MacDonald, and Q. Niu, 2004, Phys. Rev. Lett. 93, 046602.
Culcer, D., Y. Yao, and Q. Niu, 2005, Phys. Rev. B 72,

085110.
Dana, I., Y. Avron, and J. Zak, 1985, Journal of Physics C:

Solid State Physics 18(22), L679.
Dayi, O. F., 2008, Journal of Physics A: Mathematical and

Theoretical 41(31), 315204 (14pp).
Dirac, P. A. M., 1931, Proc. R. Soc. London 133, 60.
Dugaev, V. K., P. Bruno, M. Taillefumier, B. Canals, and

C. Lacroix, 2005, Phys. Rev. B 71, 224423.
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