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Electrons with spin-orbit coupling moving in mesoscopic structures can often exhibit local spin polarization.
In this paper, we study the influence of the Rashba coupling on the scattering of two-dimensional electrons
from a circular disk. It is observed that spin-polarized regions exist, even if the incident electrons are unpo-
larized. In addition to the distributions of charge and spin current in the near-field region, we also analyze the
symmetry and the differential cross section of the scattering.
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I. INTRODUCTION

Spin-orbit interaction influences the electronic and trans-
port properties of semiconductors. For example, it lifts the
degeneracy of the valence bands, modifies the electron g
factor,1 and causes skew scattering in the presence of �spin-
less� impurities. Such a skew scattering is a possible mecha-
nism for the extrinsic spin Hall effect.2 In addition, spin-orbit
interaction plays an important role in the recently proposed
intrinsic spin Hall effect.3,4 It is also crucial in the mecha-
nisms of spin relaxation and optical orientation in
semiconductors.5,6

It is highly desirable to generate flows of polarized spins
in semiconductors with the help of the spin-orbit interaction.
In these endeavors, the Rashba spin-orbit coupling7 in two-
dimensional electron gas �2DEG� plays a special role since it
allows manipulation of spin flows by varying the gate bias.
This has motivated several creative proposals for its
application.8 To explore the possibilities, the effect of Rashba
coupling in many types of mesoscopic structure have been
investigated, such as a quantum wire,9 a quantum ring,10 and
a quantum dot.11,12 In several studies, it was found that a
device with a simple geometry, in combination with the
Rashba coupling, could serve as a spin filter. For example,
the device could be a T-shaped channel,13 a quantum point
contact,14 parallel interfaces that cause double refraction,15 or
even just a curved wire.16 After applying a magnetic field, we
could further build a spin filter based on electron focusing17

or based on the an interferometer of the Stern-Gerlach type.18

In this paper, we study the scattering of electrons by a
disk in the 2DEG with Rashba coupling.19 The analysis can
be applied to a wide range of situations in which the radius R
of the disk can be much smaller, roughly the same, or much
larger than the electron wave length �. For example, the
usual impurity scattering can be simulated with R��, while
the scattering by an artificial mesoscopic disk corresponds to
R��. Here we focus on the latter case to search for possible
effects of local spin generation. We find that, because of the
Rashba coupling, spin-up and spin-down electrons are in-
deed separated and accumulate in regions of curved stripes.
The associated charge and spin currents are analyzed in de-
tail. In addition, the properties of symmetry, as well as the

differential cross section, are also investigated.20

This paper is organized as follows: Sec. II is the theoret-
ical analysis. In Sec. III, the results from numerical calcula-
tions are presented. Section IV is the conclusion.

II. ANALYSIS OF THE DISK SCATTERING

A. Hard disk scattering

Consider a two-dimensional electron system with a circu-
lar disk at the origin,

H =
p2

2m
+
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��xpy − �ypx� + V�r� , �1�

where V�r�=V0 when r�R and 0 otherwise. In the follow-
ing, the potential of the disk is considered infinite �“hard”
disk�. The two-component wave function ��1 ,�2�T with en-
ergy E satisfies the coupled equations:
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It follows that the energy eigenstates of the Hamiltonian with
momentum k, helicity 
 �E=�2k2 /2m+
�k,
=±�, and an-
gular momentum �n+1/2�� �where n is an integer� are

�
n�r,	� = � �
n�kr�ein	

�
�n+1��kr�ei�n+1�	 � , �3�

where �
n can be a Bessel function, a Neumann function, or
their linear combination, such as a Hankel function. We will
choose the Hankel functions as the eigenbasis since their
behavior at large radius suits the boundary condition for scat-
tering.
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The energy eigenstate of the Schrödinger equation with
energy E and angular momentum �n+1/2�� can be written
as

�n = an� Hn
1�kr�ein	

Hn+1
1 �kr�ei�n+1�	 � + bn� Hn

2�kr�ein	

Hn+1
2 �kr�ei�n+1�	 �

+ cn� Hn
1�k�r�ein	

− Hn+1
1 �k�r�ei�n+1�	 � + dn� Hn

2�k�r�ein	

− Hn+1
2 �k�r�ei�n+1�	 � ,

�4�

where E=�2k2 /2m+�k=�2k�2 /2m−�k�. The first two terms
have positive helicity while the other two terms have nega-
tive helicity. The most general eigenstate of the Schrödinger
equation with energy E is a superposition of the �n’s, where
the coefficients an, bn, cn, and dn are determined by boundary
conditions. Because of the circular symmetry of the poten-
tial, the angular momentum is conserved for each n compo-
nent. Therefore, each component can be considered indepen-
dent during the scattering.

The incident plane wave with momentum k and helicity 

can be decomposed as the following linear superposition:

�in,
 = eikx 1
�2

� 1

− 
i
� =

1
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�
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 � inJn�kr�ein	


inJn+1�kr�ei�n+1�	 � .

�5�

The Bessel functions Jn�kr� can be further decomposed as
Hankel functions Hn

1�kr� and Hn
2�kr�; the former correspond

to outgoing circular waves, while the later correspond to in-
coming circular waves �with no phase shift�. If an incident
wave has a definite helicity, �in,+, then by comparing Eq. �4�
with the components of Eq. �5� at large distance, one will
obtain bn= in /2�2 and dn=0 �i.e., no incoming circular wave
with negative helicity� for all n. The coefficients an and cn
need to be determined from the boundary condition at r=R.
For a hard disk, it can be shown that
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where k̃�kR and k̃��k�R. Notice that the nonzero probabil-
ity amplitudes cn lead to outgoing waves with flipped helic-
ity. For reference, if the incident wave is �in,−, then bn=0
and dn= in /2�2. At the mean time, the roles of k and k�, as
well as the roles of an and cn, have to be interchanged.

A note on the unitary condition: for convenience of dis-
cussion, consider an incoming wave with positive helicity
and angular momentum �n+1/2�� �i.e., the bn wavelet�. Be-
cause the angular momentum is conserved during the scat-
tering, the electron can only be scattered to an and cn chan-
nels with the same n. From particle conservation at large
distance, one expects that the probability amplitudes in Eq.
�4� should satisfy 	an	2+ �k /k��	cn	2= 	bn	2�= 1

8
� for all n, which

has indeed been confirmed in our numerical calculation.

B. Properties of symmetry

The system has a mirror symmetry with respect to the x
axis. Therefore, by analyzing the Schrodinger equation with
y replaced by −y, one finds ��r�*�=−�y��r��, where
r�= �x ,y�, and r�*��x ,−y� is the mirror-reflected point of r�.
Such a relation can also be obtained by a space inversion of
the �three-dimensional� coordinate, followed by a rotation
with respect to the new y axis by 180 deg. Consequently, for
the expectation value of the spin, we have

„Sx�r�*�,Sy�r�*�,Sz�r�*�… = „− Sx�r��,Sy�r��,− Sz�r��… . �7�

In a Rashba system, the current density operator is defined as

j� =
�

2mi
��†d�

dr�
−

d�†

dr�
�� −

�

�
�†�� � ẑ� . �8�

Therefore, the distribution of the expectation value of the
current density has the following symmetry:

„jx�r�*�, jy�r�*�… = „jx�r��,− jy�r��… . �9�

We adopt the generally accepted definition of the spin cur-
rent density operator,21 j�s

�=Re �†���r���, whose expectation
values have the symmetries,

„jx
x�r�*�, jy

x�r�*�… = „− jx
x�r��, jy

x�r��… ,

„jx
y�r�*�, jy

y�r�*�… = „jx
y�r��,− jy

y�r��… ,

„jx
z�r�*�, jy

z�r�*�… = „− jx
z�r��, jy

z�r��… . �10�

These symmetries will be confirmed by the numerical results
in Sec. III.

C. Asymptotic behavior of the scattered wave

For convenience, the wave function ��n can be seperated
into an incident plane wave and a scattered wave. At large
distance with kr�1, the scattered wave has the asymptotic
form,

�sc =
eikr

�r
� f1�	�

f2�	�
� +

eik�r

�r
�g1�	�

g2�	�
� , �11�

where

f � � f1�	�
f2�	�

�
=� 2

�k
�

n
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− i�n + 1/2��/2�� ein	

− iei�n+1�	 � ,

g � �g1�	�
g2�	�

�
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n

�cn − dn�exp
− i�n + 1/2��/2�� ein	

iei�n+1�	 � .

�12�

It can be shown that f† ·g=0. Also, for the incoming plane
wave �in,+,
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�
i=1

2

f i
*�� f i = 	f	2�sin 	,− cos 	,0� ,

�
i=1

2

gi
*�� gi = 	g	2�− sin 	,cos 	,0� . �13�

Therefore, f and g spinors possess spins with opposite direc-
tions at large distance. Both spins lie on the plane and are
perpendicular to the direction of propagation. One can obtain
the same equations for the incoming wave �in,−, but the
signs of the spin expectation values are opposite.

After a straightforward calculation, one can show that the
scattered current density at large distance is

j�sc =
1

r
��k

m
+

�

�
�	f	2r̂ +

1

r
��k�

m
−

�

�
�	g	2r̂ , �14�

from which the differential cross section ���	��r	j�sc	 / 	j�in	
can be calculated. For incoming waves �in,+ and �in,−, the
current densities 	j�in,+	 and 	j�in,−	 are �k /m+� /� and
�k� /m−� /�, respectively. In fact, they are equal in magni-
tude if the two incident waves have the same energy. There-
fore, the differential cross sections �
 for incoming waves
with helicity 
 are

�+� = 	f+	2 + 	g+	2 � �++� + �+−� ,

�−� = 	f−	2 + 	g−	2 � �−+� + �−−� , �15�

where f
 is the f spinor in Eq. �12�, but with the coefficients
an and bn suitably chosen for the scattering of �in,
, similarly
for g
 
see the discussion following Eq. �6��. The differential
cross sections �
,
� and �
,−
� represent helicity-preserved
and helicity-flipped scatterings, respectively. If the incoming
wave is an incoherent mixture of both helicities with frac-
tional populations P
, then the differential cross section is
simply the weighted average of the two differential cross
sections: ��= P+�+�+ P−�−�.

III. DISTRIBUTIONS OF CHARGE AND SPIN

In the following, we report on the distributions of spin
density, charge current density, and spin current density, as-
suming the wave length of the incident wave �=R. We have
also studied the cases with a larger � �e.g., �=3R� and a
smaller � �e.g., �=R /3�. These results are not presented
since the main difference is the change of scales. In the limit
of ��R, whose scale is more relevant to the case of impurity
scattering, only the components with the smallest angular
momentum �n=0 and −1� need to be considered. From Eq.
�6�, one finds that both 	c0	 and 	c−1	→0 as kR�1. There-
fore, there would be little change of helicity in the long wave
length limit.

For comparison with realistic values, we choose
m=0.068me for electrons in the GaAs-AlGaAs heterojunc-
tions. The radius of the disk is fixed at R=1000 Å. The
corresponding Fermi energy and electron density for
�F=1000 Å are 2.2 meV and 6.3�1010/cm, respectively,

which are typical values. To enhance the visual effect of the
spin-orbit coupling, the Rashba energy �k is chosen to be
one-tenth of the kinetic energy �2k2 /2m, which requires
�=0.35 nm-eV, about one order of magnitude larger than the
value in GaAs.

The out-of-plane �z� spin component results from a spin-
unpolarized incident wave with an equal �incoherent� mix-
ture of both helicities is plotted in Fig. 1, which is antisym-
metric with respect to the horizontal x axis: Sz�r�*�=−Sz�r��.
Notice that the incident waves with opposite helicities
�but the same energy� have different wave vectors
�k�−k=2m� /�2�. Therefore, their interference patterns for
opposite helicities with spins point at opposite directions are
slightly displaced with respect to each other. Because of such
a displacement between 
=+ and 
=−, regions with net z
spin still exist after partial cancellation. The existence of Sz
relies on the scattered part of the wave function in the near-
field region 
see Eqs. �11� and �13�� and would decay to zero
at large distance.

Unlike the spins in Fig. 1, the distribution of charge cur-
rent �Fig. 2�, as well as the differential cross section �Fig. 3�,
which is defined using the charge current densities, are not
sensitive to the strength of the Rashba coupling, and look
very similar even if the coupling is turned off. Notice that
Rashba spin-orbit coupling in fact preserves the helicity. The
major cause of the helicity flip is the potential V�r�, which is
incompatible with the helicity operator. In Fig. 2, the distri-
bution of charge current density from the scattering of �in,+
shows the expected pattern of the flow around the disk. If the
incident wave is a mixed state, then instead of cancellation,
the slightly displaced current densities from both helicities
will add up.

FIG. 1. Distribution of out-of-plane spin Sz, with
�= �1/10��2k /2m. The incident wave is an equal mixture of both
helicities 
=±. Lighter �darker� regions represent the regions of
spin up �down�. The peak intensity in this figure is approximately
0.22 �1 for fully polarized�.
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The differential cross sections for �in,+ are shown in
Fig. 3. It can be seen that the helicity-preserved scattering
��++� � peaks at the forward direction �	=0,2��, while the
helicity-flipped scattering ��+−� � peaks at the backward direc-
tion �	=��. At the backward direction, �++� ���=0. There-
fore, the helicity of the electron has to be flipped, but its spin
remains conserved. At longer wave length �=10R, �+−�
gains more weight and the total differential cross section
�+�=�++� +�+−� becomes more isotropic.

The distributions of spin current density are shown in Fig.
4.22 A prominent feature in the figures is the overall trend for
the j�s

y�r�� vectors to point to the left. This counter-intuitive
behavior is simply related to the fact that the spin current
density is equal to the product of velocity and spin, where

the velocity is in the positive x direction and the spin points

to the minus y direction for �in,+, therefore the scattering j�s
y

vectors generically point to the left. On the contrary, for �in,−

with spin points to the positive y direction, the direction of
the flow will be reversed. This also explains why the magni-

tudes of the spin currents j�s
x,z are small in most of the regions,

since the original incident current has no Sx and Sz compo-
nents.

In Fig. 4, it can be seen that j�s
z oscillates both in amplitude

and direction between the curved stripes. An incident wave
with opposite helicity would reverse such a flow. Therefore,
part of these flows are cancelled if the incident current is not
polarized. However, local spin current that oscillates in space
still exists, similar to the case of the spin density in Fig. 1.
All of the local spin currents j�s

x,y,z would vanish for unpolar-
ized incident electrons once the Rashba coupling is turned
off. However, if � is nonzero but the disk is removed

FIG. 2. Distribution of charge current density near the disk. The
incident wave is �in,+ with wavelength �=R. 
�= �1/10��2k /2m�.

FIG. 3. �Color online� Differential cross sections �in units of R�
for wave length �=R �solid line for �++� , dashed line for �+−� and
�=10R �dash-dotted line for �++� , dotted line for �+−� �. The numbers
in the legend are total cross sections after integration over angle

�= �1/10��2k /2m�.

FIG. 4. Distributions of spin current density j�s
x, j�s

y, and j�s
z. The

incident wave has a well-defined helicity 
=+ with �in=R

�= �1/10��2k /2m�.
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�i.e., free space�, then there exist spin currents j�s
x=� /2x̂,

j�s
y =−� /2ŷ, and j�s

z=0� , which is the background spin current
cautioned by Rashba.23 It reflects the unsatisfying current
status on a proper definition of the spin current.

Our system with unilateral current flow seems to be the
same as the 2DEG driven by an electric field,4 but there is no

global transverse spin current j�s
z, no matter if the disk is

removed or not. This does not contradict the result of the
proposed intrinsic spin Hall effect in a clean 2DEG.4 The
incident charge current flowing to the right can be under-
stood as originating from the slightly unbalanced electro-
chemical potentials on the two leads far away. In our case, all
the electrons are moving along the direction of the potential
gradient, instead of moving at all directions on the Fermi
surface in Sinova et al.’s paper.4 Consequently, no spin Hall
effect is expected if one follows similar semiclassical analy-
sis in Ref. 4.

IV. CONCLUSION

In summary, the influence of the spin-orbit coupling on
the scattering of 2D electrons from a hard disk is studied.
Such a simple setup offers us a good opportunity to investi-
gate the properties of spin and spin current in details. We
focus our attention on the near-field regime, where the scat-
tered wave is comparable to the incident wave, and appre-
ciable out-of-plane spins can be found. This work offers us a
clear understanding of the microscopic dynamics around the
mesoscopic disk and could serve as a basis for future works
considering a threaded magnetic flux in the disk, or a hybrid
device involving a disk as a component.
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