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A generalized Středa formula is derived for the spin transport in spin-orbit coupled systems. As compared
with the original Středa formula for charge transport, there is an extra contribution of the spin Hall conductance
whenever the spin is not conserved. For recently studied systems with quantum spin Hall effect in which the
z-component spin is conserved, this extra contribution vanishes and the quantized value of spin Hall conduc-
tivity can be reproduced in the present approach. However, as spin is not conserved in general, this extra
contribution cannot be neglected, and the quantization is not exact.
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Intrinsic spin Hall effect �SHE� offers new possibility of
designing semiconductor spintronic devices that do not re-
quire ferromagnetic elements or external magnetic fields.
This effect has been theoretically predicted both in p-doped
semiconductors with Luttinger type of spin-orbit �SO� cou-
pling and in n-doped semiconductors with Rashba type of
SO coupling.1–3 In the hole-doped case,1,2 the transverse spin
current is generated by the Berry curvature correction to the
group velocity of a Bloch wave packet,4,5 which is similar to
the case of the charge current in quantum Hall effect.6 Later
it is pointed out that the intrinsic SHE can even exist in band
insulators with SO coupling, which are called spin Hall
insulators.7 These spin Hall insulators would allow spin cur-
rents to be generated without dissipation. This dissipationless
character of the intrinsic SHE again finds analogy in the
quantum Hall effect.

Pioneered by the work of Kane and Mele,8 several
specific single-particle Hamiltonians �graphene8–10 and semi-
conductors11–13� giving rise to the quantum SHE �QSHE�
have been proposed, in which the intrinsic spin Hall conduc-
tance can be quantized in units of e /2�. These models can
be considered as multiple copies of the charge Hall effect
with different values of the spin, arranged so that the time-
reversal symmetry is unbroken and the spin current is non-
zero in the presence of an applied electric field. The investi-
gations on its stability with respect to interactions and
disorders have just begun.10,14,15

Because there exists similarities between SHE and quan-
tum Hall effect, one may wonder if some concepts used in
quantum Hall effect can be generalized to SHE. It is well
known that �integer� quantum Hall effect can be analyzed by
the Středa formula.6,16 Středa showed that, if the Fermi level
falls within the energy gap, the Hall conductance can be
given by the charge-density response to a magnetic field
�from orbital, rather than Zeeman coupling�. This formula
has been used to calculate the conductance of an electron gas
in the presence of an additional periodic potential.17 It has
also been generalized to three-dimensional systems.18 Since
the Středa formula is useful in quantum Hall effect, one may
expect that similar formula for spin transport may be of some

help in the study of SHE. Thus it is worthwhile to explore
such a generalization.19

In the present work, we show explicitly that, similar to the
well-known result of Středa,16 there are two terms in the
�static� spin Hall conductance �sH, one of which, �sH

I , is due
to the electron states at the Fermi energy, and the other one,
�sH

II , is formally related to the contribution of all occupied
electron states below the Fermi energy. Since the proposed
models for QSHE thus far are all band insulators, where the
density of states at the Fermi level is zero, therefore �sH

I =0.
Hence we are mainly interested in the contribution to QSHE
from �sH

II . Furthermore, we show that �sH
II can be separated

into a conserved part and a nonconserved part, in which the
conserved part gives rise to a Středa-like contribution. That
is, instead of directly calculating the spin-current response to
an electric field, we can calculate the spin-density response to
a magnetic field �again from orbital, rather than Zeeman cou-
pling� to obtain the conserved part of �sH

II . However, another
contribution to �sH

II , which comes from the nonconservation
of spin, is not zero in general. We note that our derivation is
model independent, and therefore it applies to any QSHE
model. When this general formula is applied to the afore-
mentioned specific models of QSHE with conserved electron
spin, the quantized values of �sH can be easily reproduced.
As the spin in a spin-orbit coupled system is not conserved in
general, the non-Středa-like contribution in �sH

II cannot be
neglected, and it can result in deviation from the quantized
values, as shown in the numerical work of Ref. 10.

Using the linear response theory, the static spin Hall con-
ductivity, for a z-component spin current flowing along the y
direction under an electric field in the x direction, can be
expressed as20

�sH = i��� d�f���Tr� jy
z dG+���

d�
jx��� − H�

− jy
z��� − H�jx

dG−���
d�

� , �1�

where � is the volume of the system, G±���=lim�→0+��
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−H± i��−1 is the operator Green function of electrons de-
scribed by the Hamiltonian H. j	�j	


� is the charge
�
-component spin� current density operator in 	 direction.
The trace goes over every eigenstate in the space of the
Hamiltonian H. In Eq. �1�, the delta function can be
written in terms of Green functions, ���−H�=−�G+���
−G−���� /2�i.

If we keep half of Eq. �1� and make an integration by
parts on the second half, then �sH can be expressed as

�sH = �sH
I + �sH

II , �2�

�sH
I = −

i��

2
� d�

�f���
��

Tr�jy
zG+���jx��� − H�

− jy
z��� − H�jxG

−���� , �3�

�sH
II =

��

4�
� d�f���Tr� jy

z dG−���
d�

jxG
−��� − jy

zG−���jx
dG−���

d�

− jy
z dG+���

d�
jxG

+��� + jy
zG+���jx

dG+���
d�

� . �4�

Here �sH
I stems from the contribution of electrons at the

Fermi surface and �sH
II formally contains the contribution of

all filled states below the Fermi energy. Note that at zero
temperature, �sH

I is proportional to the density of states at the
Fermi energy. Therefore, for band insulators, where the
Fermi level lies within the band gap such that the density of
states at the Fermi level is zero, �sH

I =0. Since we are inter-
ested in the band insulators with QSHE, we need only con-
sider the contribution from �sH

II .
In order to simplify �sH

II , explicit expressions of jx and jy
z

are needed. For systems with conserved �total� spin, the spin
current can be uniquely defined �up to a term with zero di-
vergence� through the equation of continuity. For systems
with spin-orbit coupling, in which the spin is usually not
conserved, the spin current cannot be uniquely defined.21 In
many experiments, the spin current can be measured as a
spin flux in the external metal contacts, where there is no �or
negligible� spin-orbit coupling. But one cannot infer the be-
havior of the spin current in the region of interest, which has
spin-orbit coupling, through such a measurement.21 Here the
conventional definition for spin current is used, that is, jy

z

�	vy ,sz
 /2�.22 The charge current density operator is jx

=−evx /�, as usual.
Using the cyclic property of the trace operation and the

relations

dG±���
d�

= − �G±����2,

i�v	 = �r	,H� = − �r	,
1

G±���� ,

we find that the spin Hall conductance �sH
II can be separated

into a “conserved” part �sH
II,�c� and a “nonconserved” part

�sH
II,�n�,

�sH
II = �sH

II,�c� + �sH
II,�n�, �5�

�sH
II,�c� =

e

4�i�
� d�f���Tr	szG

+�xvy − yvx�G+

− szG
−�xvy − yvx�G−
 , �6�

�sH
II,�n� = −

i�2e

4��
� d�f���Tr	ṡz��G+�2vxG

+vyG
+

+ G+vyG
+vx�G+�2 − H.c.�


−
�e

8��
� d�f���Tr	ṡz�G+�y,vx��G+�2

+ �G+�2�y,vx�G+ + H.c.�
 . �7�

Here we call �sH
II,�n� as the nonconserved part because it con-

tains terms with ṡz��sz ,H� / i� and therefore vanishes if sz is
conserved. The nonconserved part can be simplified under
certain situation. For example, if the momentum of the orbit
couples with the spin linearly, such as the Rashba-
Dresselhaus SO coupling in two-dimensional electron gas,
then the commutator �y ,vx�=0, and the second line in Eq. �7�
vanishes.

By employing the identity23

�

�B
Tr	sz��� − H�
 =

− e

4�i
Tr	szG

+�xvy − yvx�G+

− szG
−�xvy − yvx�G−
 , �8�

the conserved part �sH
II,�c� can be rewritten as a generalized

Středa formula for SHE,

�sH
II,�c� = − � �Sz

�B
�

	,T
, �9�

where B is the magnitude of a uniform external magnetic
field in the z direction, 	 is the chemical potential, T is the
temperature, and Sz is the z-component spin density,

Sz =
1

�
� d�f���Tr�sz��� − H�� . �10�

Equation �9� shows the relation between the spin Hall con-
ductivity and the derivative of the z-component spin density
with respect to the perpendicular magnetic field B. Equations
�3�, �7�, and �9�, are the main results of this paper.

Some comments are in order. Contrary to the case of the
original Středa formula for charge transport,16 there always
exists an extra contribution for �sH

II besides the Středa-like
one as long as the spin is not conserved. Moreover, following
the same reasoning of the present derivation, it is obvious
that, for a current carrying some conserved quantity, there
will always be a corresponding Středa-like formula. For ex-
ample, when the total angular momentum Jz consisting of
both spin and orbit angular momenta is conserved, the Hall
conductivity for the total-angular-momentum current can be
calculated through the total-angular-momentum density re-
sponse to a magnetic field. That is, a Středa-like formula in
which sz is replaced by Jz can be derived.

In the following, we illustrate the application of the
present approach to two of the aforementioned QSHE mod-
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els. As mentioned earlier, since the proposed models for
QSHE thus far are all band insulators, including this two
models, we need to consider only the contribution from �sH

II .
In the first example, Bernevig and Zhang considered the con-
duction electron in a semiconductor with zinc-blende struc-
ture, such as GaAs.11 In this type of materials, it is possible
to generate a velocity-dependent force on the electron by
applying a shear strain gradient. The electron spin is coupled
to the velocity and the strain in such a way that mimics the
usual spin-orbit coupling. By carefully choosing the strain
configuration, in combination with a parabolic confinement
potential, they are able to generate an effective �uniform�
magnetic field. It is shown in Ref. 11 that, because of a linear
strain gradient, there exist opposite effective orbital magnetic
fields ±Beff acting on spin ↑ and ↓ electrons. Thus degenerate
quantum Landau levels are created and then �sH becomes
quantized in units of e /2�.

This result can be understood as follows. Even though the
intrinsic SO coupling is present, sz remains conserved in this
case. Therefore, the nonconserved part �sH

II,�n�=0 and the spin
Hall conductance comes merely from the Středa-like one
� Eq. �9��, which is the spin-density response to an infinitesi-
mal external magnetic field �B in the z direction �at a fixed
chemical potential�. When a weak external magnetic field �B
��Beff� is turned on, the total effective fields acting on spin ↑
and ↓ electrons will become ±Beff+�B such that the degen-
eracies per unit area of the corresponding Landau levels be-
come �Beff±�B�e /h. Therefore, for a fixed chemical potential
lying within the gap between the Nth and the �N+1�th Lan-
dau levels, the number density of electrons with spin ↑ and ↓
becomes n↑/↓=N�Beff±�B�e /h and the induced spin density
becomes �Sz= �� /2��n↑−n↓�= �Ne /2���B. Thus, using Eq.
�9�, �sH=�sH

II,�c�=Ne /2� can be obtained.
As the next application of our formula, we consider the

tight-binding model of graphene proposed by Kane and
Mele.8 They considered a generalization of Haldane’s
graphene model that exhibits quantum Hall effect in the ab-
sence of a uniform magnetic field.24 In the original model,
the electron is spinless and one has to consider second-
neighbor hopping, in combination with a periodic magnetic
field that has zero mean flux per unit cell, to open gaps at the
corners of the Brillouin zone. In Ref. 8, by including electron
spin with a time-reversal invariant SO interaction, one does
not require a periodic magnetic field to produce similar gaps
that reveal the topology of the electron bands in such a ma-
terial.

In the absence of the Rashba SO coupling term, it is
shown that this model can give rise to QSHE with a quan-
tized spin Hall conductivity �sH=e /2�. This result can also
be obtained by the present approach. For this model of
graphene without the Rashba SO coupling, spin sz is con-
served. Again, �sH

II,�n�=0 and the spin Hall conductance comes
from the Středa-like one � Eq. �9�� only. As mentioned in
Ref. 8, each independent subsystem of spin direction �↑ or ↓�
is equivalent to Haldane’s model for spinless electrons,24

where the mass gaps at different corners �say, the K and the
K� points� of the hexagonal Brillouin zone of a honeycomb
lattice of carbon atoms have different signs. Therefore, as
shown by Haldane, at zero temperature and with a fixed
chemical potential, the application of a weak external mag-
netic field �B will induce an extra field-dependent number
density of electrons �n↑/↓=sgn�m↑/↓��e /h��B, where m↑/↓ de-
notes the mass gap for each spin component at a particular
corner �say, the K point� of the hexagonal Brillouin zone.24

Since m↓=−m↑ for the QSHE model proposed in Ref. 8, the
induced spin density by applying a weak external magnetic
field �B becomes �Sz= �� /2��2e /h��B= �e /2���B. Thus, us-
ing Eq. �9�, �sH=�sH

II,�c�=e /2� can again be reached.
In generic cases, spin is not conserved in the presence of

a SO interaction and therefore spin current is not well de-
fined. As done in Ref. 2, one can separate the spin operator sz

into a conserved part sz
�c� and a nonconserved part sz

�n�: sz

=sz
�c�+sz

�n�, where the conserved part sz
�c� consists of only in-

traband matrix elements of the spin. Thus a conserved spin
current can be defined by substituting the conserved part sz

�c�

into the conventional expression of spin current. By employ-
ing this definition of spin current, it can be shown that the
nonconserved part �sH

II,�n� vanishes and the conserved part
�sH

II,�c� again obeys the Středa-like formula, Eq. �9�, in which
the spin operator sz is replaced by sz

�c�. In Ref. 25, another
definition of the spin current is proposed which includes the
torque dipole density. If we use this definition in the deriva-
tion for �sH

II , the Středa-like formula Eq. �9� for the con-
served part �sH

II,�c� remains valid, and the nonconserved part
�sH

II,�n� remains nonzero and has different expression from
Eq. �7�.

In conclusion, a generalized Středa formula is derived for
spin transport, which relates the spin Hall conductivity with
the spin density response to an external magnetic field when
the energy bands are filled. For systems in which the spins
are not conserved, there is an additional contribution to the
spin-density response term. The present approach is most
convenient for the recently proposed QSHE systems with
conserved spin and filled energy bands. We demonstrate that
their results on the quantized spin Hall conductivity can be
reproduced with great ease. Since the original Středa formula
has been useful in analyzing the quantum Hall effect in the
presence a periodic potential if the Fermi level lies within a
miniband gap,17,18 we expect the generalized Středa formula
will be helpful for the spin transport under the same
situation.26 However, unlike the charge Hall effect, there is
generically no conserved spin density in the presence of
spin-orbit coupling. This could make the applicable range of
the Středa-like formula more restricted.
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