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In a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings, there are two spin-split
energy surfaces connected with a degenerate point. Both the energy surfaces and the topology of the Fermi
surfaces can be varied by an in-plane magnetic field. We find that, if the chemical potential falls between the
bottom of the upper band and the degenerate point, then simply by changing the direction of the magnetic field,
the magnitude of the spin Hall conductivity can be varied by about 100 percent. Once the chemical potential
is above the degenerate point, the spin Hall conductivity becomes the constante/8p, independent of the
magnitude and direction of the magnetic field. In addition, we find that the in-plane magnetic field exerts no
influence on the charge Hall conductivity.
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In spintronics devices, injection of spins efficiently from
ferromagnetic leads has remained a very challenging prob-
lem. Therefore, alternative approaches to generate spin po-
larization current are being intensively pursued. For ex-
ample, one can use an external electric field to manipulate
the spin transport via spin-orbit coupling. For bulk semicon-
ductors, Murakamiet al. showed that one can employ the
spin-orbit coupling in hole bands to generate a spin Hall
current.1 According to them, the spin Hall current is dissipa-
tionless and related to the Berry curvature, which usually
vanishes in materials with both inversion and time-reversal
symmetry, such as Si, but could be nonzero because of the
spin-orbit coupling.

In two-dimensional electron gass2DEGd, spin-orbit cou-
pling could arise because of structure inversion asymmetry
sthe Rashba mechanismd,2 bulk inversion asymmetrysthe
Dresselhaus mechanismd,3 or other mechanisms.4 The exis-
tence of Rashba coupling in hetero-junctions has led to many
creative proposals for its applications. This includes, for ex-
ample, the current modulator proposed by Datta and Das,5 or
the spin filter based on electron focusing.6 The effect of
Rashba coupling in quantum wire,7 quantum ring,8 or quan-
tum dot9 has also been investigated.10 Recently, Sinovaet al.
showed that in a clean and infinite Rashba system, one could
generate a spin Hall current by an electric field.11 In a clean,
free-electron-like system, inclusion of both Rashba and
Dresselhaus mechanisms still yield the samesup to a sign
changed spin Hall conductivitysSHCd e/8p, independent of
spin-orbit coupling strength and carrier density if both bands
are populated.12,13

The robustness of the valuee/8p against factors such as
disorder, finite-size effect, and electron-electron interaction is
being actively studied. It is generally believed that strong
disorder would destroy the spin Hall effect in 2DEG. Ac-
cording to some analyses, thee/8p value could be preserved
in weak disorder.14 However, several perturbative calcula-
tions conclude that the spin Hall effect would disappear as
long as disorder exists.15 Numerical calculations thus far
tend to show that the SHC is indeed robust against weak
disorder, but reduces to zero at strong disorder.16 This issue
remains to be clarified. Besides disorder, it is found that the

interactions between electrons could renormalize the SHC to
some extent.17,18

For the 2DEG with both Rashba and Dresselhaus spin-
orbit couplings, there are two energy surfaces connected with
a degenerate point at momentumkW0=0W. The SHC is a con-
stant when both bands are populated.12,13 If the chemical
potentialm is below the minimum energy of the upper band
sdenoted byE+,min, which equals the degenerate energyE* in
this cased, the SHC would depend on electron density.11 In
the presence of an in-plane magnetic field, the energy sur-
faces are distorted such thatkW0Þ0W andE+,min could be below
E* . It would be interesting to investigate the effect of distor-
tion on the SHC. Our major finding is that, whenm is lying
betweenE+,min and E* , one can vary the magnitude of the
SHC by as much as 100 percent simply by changing the
direction of the magnetic field. Whenm is aboveE* srather
thanE+,mind, the SHC retains the same constante/8p, inde-
pendent of the direction and magnitude of the magnetic field.
Even though the in-plane magnetic field has significant effect
on the SHC, it exerts no influence on the charge Hall con-
ductivity, which remains zero as the topology ofsone-
dimensionald Fermi surfaces are changed due to the rising
chemical potential.

We consider the following Hamiltonian,

H =
p2

2m* +
a

"
ssxpy − sypxd +

g

"
ssxpx − sypyd + bxsx + bysy,

s1d

in which a and g represent the Rashba coupling and the
Dresselhaus coupling,bW =sg* /2dmBBW , whereg* is the effec-

tive g-factorsassumed isotropic and field-independentd andBW

is the in-plane magnetic field. The finite thickness of the
2DEG layer has been neglected so the magnetic field couples
only to the electron spin. The eigenenergies of the Hamil-
tonian are

ElskWd = E0skWd + lÎsgkx + aky + bxd2 + sakx + gky − byd2,

s2d

where E0skWd="2k2/2m* and l=±, with the corresponding
eigenstates,
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ukW, + l =
1
Î2

S 1

− ieiu D, ukW,− l =
1
Î2

S− ie−iu

1
D , s3d

where tanu=sgkx+aky+bxd / sakx+gky−byd. There are sev-
eral legitimate but different choices of the eigenstates. Usu-
ally, the exponential factors are placed at the same lowersor
upperd position for the two spinors. The choice in Eq.s3d
ensures that the eigenstates are free of phase ambiguity at the
degenerate pointkW0 in the presence of an infinitesimal and
perpendicular magnetic field.19 This choice is crucial in ob-
taining the correct Hall conductance, as will be explained in
more details later.

It can be seen from Eq.s2d that the two energy surfaces
are degenerate at the pointkW0=fsgbx+abyd / sa2−g2d ,
−sabx+gbyd / sa2−g2dg. Whena=g, there is no degeneracy
in general. But ifbx also equalsby, then there is a line
degeneracy alongkx−ky=bx/a, similar to the case for

bW =0W.12,13The energy contours for energies located below, at,
and above the degenerate point are shown in Fig. 1.20 The
degenerate point is moving from outside of the contours to
inside as the energyE is increasing. We find that the density
of statesgsEd undergoes a finite jump whenE is crossing a
band bottom, and it can be proved thatgsEd=m/ sp"2d, same
as the free electron value, as long asE is aboveE* =EskW0d.

The spin Hall conductivity is given by the Kubo
formula,11

smn
h =

1

i"
o
kW

o
l,l8slÞl8d

fkW,l − fkW,l8

vll8
2 skWd

kkW,lu jm
hukW,l8lkkW,l8u jnukW,ll,

s4d

wherejm
h =s" /4dsvmsh+shvmd is the generally accepted defi-

nition of the spin current,jn=−evn is the electric current,

vm=]H̃skWd /]s"kmd, H̃skWd;e−ikW·rWHeikW·rW, and "vll8skWd;ElskWd
−El8skWd. It can be shown that bothsxy

x andsxy
y are zero in the

absence of disorder, and

sxy
z = −

2e

m"
o
kW

sfkW,− − fkW,+d
kx

2sa2 − g2d − kxsaby + gbxd
v+−

3 ,

s5d

where"v+−=2fsakx+gky−byd2+sgkx+aky+bxd2g1/2. A typi-
cal result for the SHC as a function of energy is plotted in
Fig. 2. For the special case ofg=0, the degenerate pointkW0

=bW 3 ẑ/a, andE* =s"2/2m*dsb /ad2. For b.a2/2, which is

the case for Fig. 2, the bottoms of upper and lower bands are
at E±,min=−sm*a /"2d2±b. Numerical values of these ener-
gies are given in the figure caption. It can be seen that the
SHC becomes nonzero whenE is above the bottom of the
lower band. It remains monotonic whenE is between the
bottoms of lower and upper bands, and may rise over the
valuee/8p. For most angels of the magnetic field, the abrupt
turn of sxy

z at E=E+,min forms a cusp. Once the energy
reachesE* , the SHC becomes the constante/8p, indepen-

dent of the direction ofbW .
Notice that, according to our choice, the transverse spin

current is along thex direction and the longitudinal electric
field is along they direction. When the energyE equals
E+,min, the magnitude ofsxy

z can be changed by roughly 100

percent whenBW rotates from the transverse directionsmini-
mumd to the direction of the electric fieldsmaximumd. As the
angle increases further, the SHC again reaches minimum
along the −x direction and rises to maximum along the −y
direction. That is, wheng=0, there is a twofold symmetry in

the plot ofsxy
z sBW d.

In our modelfEq. s1dg, in the most general cases when
botha andg are nonzero, the SHC still remains the constant
e/8p when E is aboveE* . We sketch the proof below to
show that this is indeed true for all ranges of the parameters

FIG. 1. Schematic diagrams of
the energy contours for energies
locatedsad below, sbd at, andscd,
above the degenerate energyE* .
The degenerate pointkW0 is marked
with a cross. There is no rotational
symmetry for the contours when

a, g, andbW are all nonzero.

FIG. 2. The spin Hall conductivity as a function of energy for

different directions of the magnetic field. The angles betweenBW and
x axis are 0, 30, 45, 60, and 90°. The parameters arem* =0.024me,
a=6310−9 eV cm, g=0, andB=6.52 T sg* =15d. The bottoms of
lower or upper bands and the degenerate energy are atE−,min=
−3.4 meV,E+,min=2.27 meV, andE* =3.54 meV.
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a, g, andbW .21 While evaluating the integral in Eq.s5d, it is

more convenient to shift the origin tokW0. Then thebW depen-
dence ofv+− in the denominator can be eliminated,

"v+− = 2ksa2 + g2 + 2ag sin 2fd1/2 ; 2kgsfd, s6d

where the magnitudek and polar anglef are relative to the
new originkW0. Thek integration now can be carried out ana-
lytically,

sxy
z = −

e"2

4m

a2 − g2

s2pd2 E
0

2p

df
„k−sfd − k+sfd…cos2 f

g3sfd

−
e"2

4m

aby + gbx

s2pd2 E
0

2p

df
ln„k−sfd/k+sfd…cosf

g3sfd
,

s7d

wherek± are the lower and upper bounds of thek integration.
As long as the energy is aboveE* , the values ofk− andk+ are
uniquefsee Fig. 1scdg,

klsfd = − k0 cossf − f0d −
l

2
gsfd

+ Îfk0 cossf − f0d + lgsfd/2g2 + E − E* , s8d

wheref0 is the angle betweenkW0 and thex axis. From Eq.
s8d, one may not expect that the SHC would be a constant in
energy, since bothk− andk+ depend on energyE explicitly.
Nevertheless, we can show that the integrals in Eq.s7d are
independent of energy. Substitute the difference,

k−sfd − k+sfd = gsfd + Îfk0 cossf − f0d − gsfd/2g2 + E − E*

− Îfk0 cossf − f0d + gsfd/2g2 + E − E* , s9d

to the first integral in Eq.s7d, we find that the first termgsfd
contributese/8p to the SHC. The first square root in Eq.s9d
is equal to the second one after the shiftf→f+p. Since
both cos2 f and gsfd in Eq. s7d are invariant underf→f
+p, these two terms in Eq.s9d would cancel with each other
after integration. Similarly, for the second term in Eq.s7d,
one can show that the ratiok−sfd /k+sfd is invariant under
f→f+p. Therefore, the second integral in Eq.s7d vanishes
since the cosf in the numerator changes sign after ap ro-
tation.

The proof above is valid forE.E* . At the degenerate
energyE=E* , the denominatorv+− is zero and the proof
above does not apply, but it still can be proved that the SHC
converges to the valuee/8p without showing any singular
behavior atE=E* .

In Fig. 3, we show the SHC as a function of the in-plane

magnetic fieldBW at a fixed electron densityn. For smaller
magnetic field, the degenerate energyE* is lower than the
chemical potential. Therefore, there is a plateau withusxy

z u
=e/8p at the center of Fig. 3. The plateau has an elliptical
boundary defined by the equationm=E* , or, equivalently,

bx
2 + 4agbxby + by

2 = z
sa2 − g2d2

a2 + g2 , s10d

where z is a constant of the order of electron density. For
larger magnetic field, the degenerate point is driven out of
the Fermi sea and the SHC could be enhanced or reduced,
depending on the direction ofBW ssimilar to the behavior in
Fig. 2d. The circle of cuspsridged surrounding the plateau is
caused by the crossing ofm and the bottom of the upper band
E+,min ssee Fig. 2d. Split cusps are visible in Fig. 3 in over
half of the ridge, which is due to there-crossing ofm and
E+,min. That is, when the magnetic field is increasing at a
fixed angle, because of the complex shift of the bottoms of
energy surfaces, the chemical potentialmsBd could fall below
E+,minsBd after going through the first ridge atmsB1d
=E+,minsB1d, then rise to touch the bottom of the upper band
again atmsB2d=E+,minsB2d sB2.B1d, where the second ridge
sor cuspd is formed.

The Rashba and Dresselhaus couplings in Fig. 3 area
=6310−9eV cm andg=2310−9eV cm.22 We choose the ef-
fective massm* =0.024me and effectiveg-factor g* =15 for
electrons in bulk InAs. The electron densityn is fixed at
5.731010/cm2 during theBW scan. The ranges of in-plane
magnetic field are 15 T in both directions. Based on these
realistic parameters, such angular variation of SHC might be
tested in future experiments. Different material parameters,
such asm* andg* , could alter the range of appropriaten and
B by one or two orders of magnitude. In general, it is better
to choose materials with a large product ofm*g* to reduce
the magnetic field strength required.23

At the end of the paper, we comment briefly on whether
the in-plane magnetic field could generate a charge Hall cur-
rent in the Rashba-Dresselhaus system. Replacing the spin
current jm

h in Eq. s4d by electric currentjm, the Hall conduc-
tivity for the l-bandsl= ± d can be written as24

sxy
l =

e2

"
o

kW filled

VlskWd, s11d

where the Berry curvature for theskW ,ld state is

FIG. 3. Spin Hall conductivity plotted as a function of the in-

plane magnetic fieldBW . There is a plateau in the middle when the
magnetic field is weak. For stronger magnetic field beyond the pla-
teau region, a circle of cuspsridged is clearly visible. Contours of
the surface are projected onto the plane below. Relevant parameters
are specified in the text.
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VlskWd = i o
l8Þl

kkW,luvxukW,l8lkkW,l8uvyukW,ll − kkW,luvyukW,l8lkkW,l8uvxukW,ll

vll8
2 skWd

. s12d

It is easy to show that the Berry curvature is zero at everykW,
except at the degenerate point where the formula above does
not apply. However, one can preform a line integral along an
arbitrary contour that encloses the degenerate point to obtain
the Berry phase,

Gl = R dkW · kkW,lui
]

] kW
ukW,ll = − sgnsa2 − g2dlp, s13d

in which sgn sa2−g2d=1, 0, 21 when a2 is larger than,
equal to, or smaller thang2. This is basically the same result

as that ofbW =0, and reflects the fact that the Berry phase is
topological in nature and is not altered by the smooth distor-
tion of the energy surfaces. We note that the result in Eq.s13d
differs slightly from thatsfor bW =0d in Ref. 13, in which the
signs ofG+ andG− are the samesdiscussed belowd. From the
nonzero Berry phase, one can infer that the Berry curvature
is singular at the degenerate point,VlskWd=−sgnsa2

−g2dlpdskW −kW0d, which is different from the usual
monopole-field-like Berry curvature. The result above is
valid for the Rashba-Dresselhaus system in an arbitrary in-
plane magnetic field.

Despite the nonzero Berry phase, the Hall conductance of
the system remains zero for whole range of the chemical
potential. To illustrate this point, let us consider the simpler

“pure” Rashba systemsg=0,bW =0d. If the chemical potential
is below the degenerate point, then only the lower band is
populated and thekW integral in Eq.s11d is performed over an
annular region. The result of integration using Eq.s11d is
zero since the singularity of Berry curvature isnot located in
the annulus. If the chemical potential is above the degenerate
point, then both bands are populatedsdegenerate point in-
cluded inbothcasesd, andsxy=sxy

+ +sxy
− =0. Therefore, there

exists no charge Hall current no matter the chemical poten-
tial is below or above the degenerate point. Different choices
of bases in Eq.s3d may lead to different results such assxy

l

=e2/ s2hd sl independentd,13 which would give sxy=sxy
+

+sxy
− =e2/h when both bands are populated. This would im-

ply the counter intuitive result that the system exhibits
charge Hall effect even in the small spin-orbit coupling
limit.25

For the generic situation in which bothg andbW are non-
zero, the topology of the one dimensional Fermi surface can
be different from those described in the previous paragraph
ssee Fig. 1d. But it is not difficult to see that the conclusion of
null charge Hall current remains valid.

It is possible to reveal the nonzero Berry curvature by
adding a very smallsso that orbital quantization can be ne-
glectedd perpendicular magnetic field to remove the point
degeneracy. When the chemical potential is within the Zee-
man gap, only the lower band is filled but now the point of
high curvature is included in thekW-integration in Eq.s11d.
Therefore, whenm is within the Zeeman gap, the Hall con-
ductance is roughly equal toe2/ s2hd.26

In summary, crucial energy scales in the Rashba-
Dresselhaus system under an in-plane magnetic field are: the
bottoms of the spin-split bandsE±,min, the degenerate energy
E* , and the chemical potentialm. All of these energies de-
pend on the applied magnetic field. By shifting the chemical
potential m through E+,min and E* , the SHC could first be
enhancedsor reducedd and show a cusp, then become a
material-independent constant. Whether the SHC is en-
hanced or reduced depends on, and can be controlled by, the
direction of the magnetic field. Finally, we caution that the
charge Hall conductivity depends subtly on the choice of
eigenstates. As far as we know, the SHC is not influenced by
such subtle choice of eigenbasis.
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