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Effect of in-plane magnetic field on the spin Hall effect in a Rashba-Dresselhaus system
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In a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings, there are two spin-split
energy surfaces connected with a degenerate point. Both the energy surfaces and the topology of the Fermi
surfaces can be varied by an in-plane magnetic field. We find that, if the chemical potential falls between the
bottom of the upper band and the degenerate point, then simply by changing the direction of the magnetic field,
the magnitude of the spin Hall conductivity can be varied by about 100 percent. Once the chemical potential
is above the degenerate point, the spin Hall conductivity becomes the coms8antindependent of the
magnitude and direction of the magnetic field. In addition, we find that the in-plane magnetic field exerts no
influence on the charge Hall conductivity.
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In spintronics devices, injection of spins efficiently from interactions between electrons could renormalize the SHC to
ferromagnetic leads has remained a very challenging protsome extent8
lem. Therefore, alternative approaches to generate spin po- For the 2DEG with both Rashba and Dresselhaus spin-
larization current are being intensively pursued. For ex-Orbit couplings, there are two energy surfaces connected with
ample, one can use an external electric field to manipulata degenerate point at momentugr0. The SHC is a con-
the spin transport via spin-orbit coupling. For bulk semicon-stant when both bands are populatéd If the chemical
ductors, Murakamiet al. showed that one can employ the potentialu is below the minimum energy of the upper band
spin-orbit coupling in hole bands to generate a spin Halldenoted byE, i, which equals the degenerate enelgyin
current! According to them, the spin Hall current is dissipa- this casg the SHC would depend on electron densityn
tionless and related to the Berry curvature, which usuallyihe presence of an in-plane magnetic field, the energy sur-
vanishes in materials with both inversion and time-reversafaces are distorted such that* 0 andE, ., could be below
symmetry, such as Si, but could be nonzero because of tHe-. It would be interesting to investigate the effect of distor-
spin-orbit coupling. tion on the SHC. Our major finding is that, whenis lying

In two-dimensional electron gd@DEG), spin-orbit cou- betweenE, i, and E«, one can vary the magnitude of the
pling could arise because of structure inversion asymmetryHC by as much as 100 percent simply by changing the
(the Rashba mechanig/ bulk inversion asymmetrythe direction of the magnetic field. Whem is aboveE. (rather

Dresselhaus mechanigfhor other mechanisnfsThe exis-  thanE. min), the SHC retains the same constaf8, inde-

tence of Rashba coupling in hetero-junctions has led to mang€ndent of the direction and magnitude of the magnetic field.

creative proposals for its applications. This includes, for ex-="€" though the in-plane magnetic field has significant effect

ample, the current modulator proposed by Datta and°as gn the SHCH |thexerts no influence Orr: the chlarge (I;;all con-
L " ductivity, which remains zero as the topology 6fne-

gﬁsr?&nc2|$%1inbga?§zu31t3§cxﬁgqJgﬁ?jri]grrizgg ﬁfgﬁtagf dihmensiolnal Fermli surfaces are changed due to the rising

- . ) i tential.

tum dof has also been investigat&Recently, Sinovat al. ¢ ?Nngcgmps?di? Itﬁe following Hamiltonian

showed that in a clean and infinite Rashba system, one could '

generate a spin Hall current by an electric fi€ldin a clean, B & _ +Y _ + +

free-electron-like system, inclusion of both Rashba and ~ 2m' h(crxpy oy ﬁ(prX TPy ¥ Bt Byoy,

Dresselhaus mechanisms still yield the safup to a sign (1)

change spin Hall conductivity(SHC) e/8, independent of

spin-orbit coupling strength and carrier density if both banddn which a and y represent the Rashba coupling and the

are populated?!3 Dresselhaus coupling3=(g'/2)ugB, whereg' is the effec-

_ The robustness of the valeg8m against factors such as e g factor (assumed isotropic and field-independetdB
disorder, finite-size effect, and electron-electron interaction igg the in-plane magnetic field. The finite thickness of the

being actively studied. It is generally believed that strongypeG |ayer has been neglected so the magnetic field couples
disorder would destroy the spin Hall effect in 2DEG. Ac- 4y 15 the electron spin. The eigenenergies of the Hamil-
cording to some analyses, teg8 value could be preserved (,nian are

in weak disordet? However, several perturbative calcula- R R
tions conclude that the spin Hall effect would disappear as E,(K) = Eq(K) + NV (yke + ak, + B)? + (ake + ¥k, = B)?,
long as disorder existS. Numerical calculations thus far (2)
tend to show that the SHC is indeed robust against weak

disorder, but reduces to zero at strong disot8dihis issue  where EO(IZ):ﬁZkZ/Zm* and A=z, with the corresponding
remains to be clarified. Besides disorder, it is found that thesigenstates,

1098-0121/2005/18)/08531%5)/$23.00 085315-1 ©2005 The American Physical Society



MING-CHE CHANG PHYSICAL REVIEW B71, 085315(2005

@) ®) P © FIG. 1. Schematic diagrams of
the energy contours for energies

located(a) below, (b) at, and(c),
above the degenerate enerBy.

<\ The degenerate poift is marked
J with a cross. There is no rotational
/+ symmetry for the contours when

a, vy, and B are all nonzero.

R 1( 1 R 1 [-ie’? the case for Fig. 2, the bottoms of upper and lower bands are
K +)= —r< m)' | ,—>:=< 1 ) (3 at E,pmin=—(m"a/%?)?+ 8. Numerical values of these ener-
V2 V2 gies are given in the figure caption. It can be seen that the
where tang=(yke+aky+ B,/ (ake+ vk~ B,). There are sev- SHC becomes nonzero whénis gbove thg bottom of the
eral legitimate but different choices of the eigenstates. UsulOWwer band. It remains monotonic whéh is between the
ally, the exponential factors are placed at the same Igarer P0ttoms of lower and upper bands, and may rise over the
uppe) position for the two spinors. The choice in E) valuee/ 8. For most angels of the magnetic field, the abrupt
ensures that the eigenstates are free of phase ambiguity at thn Of %, at E=E, nj, forms a cusp. Once the energy
degenerate poirk, in the presence of an infinitesimal and reaches:, the SHC bgcomes the constaiB, indepen-
perpendicular magnetic fiefd. This choice is crucial in ob- dent of the direction of3.
taining the correct Hall conductance, as will be explained in Notice that, according to our choice, the transverse spin
more details later. current is along the direction and the longitudinal electric

It can be seen from Eq2) that the two energy surfaces field is along they direction. When the energf equals
are degenerate at the poift=[(yB+aB,)!(a?~?), E. min- the magnitude ofr,, can be changed by roughly 100
~(apxtvBy)/(a?*~97)]. Whena=1y, there is no degeneracy Ppercent wherB rotates from the transverse directiamini-
in general. But if 3, also equalsB,, then there is a line mum) to the direction of the electric fieldnaximun).As the_
degeneracy along,—k,=pB,/a, similar to the case for angle increases further, the SHC again reaches minimum

5=0.1213The energy contours for energies located below, at2l0"d the x direction and rises to maximum along thy -

and above the degenerate point are shown in F#j.The direction. Thatis, whery=0, there is a twofold symmetry in
degenerate point is moving from outside of the contours tghe plot of o} (B).

inside as the energy is increasing. We find that the density ~ In our model[Eq. (1)], in the most general cases when
of statesg(E) undergoes a finite jump wheh is crossing a  botha andy are nonzero, the SHC still remains the constant
band bottom, and it can be proved tigaE) =m/(7%2), same  €/8m when E is aboveE.. We sketch the proof below to
as the free electron value, as longEss aboveE. =E(Ky). show that this is indeed true for all ranges of the parameters

The spin Hall conductivity is given by the Kubo T T T T T T T I T T

—-ie

formula!! 141 . R — T

1 fio—f 12 . a0
o= finr . L . 2F el .

o7,=2% B KR KN ]IRA), 2 J—

i< 2 @ ©
K AN (L) O . 1r
[

@ 3 g} -
wherej'=(%/4)(v,0,*0,v,) is the generally accepted defi- Nb:a o6k i

nition of the spin currentj,=—ev, is the electric current,

vﬂza@(ﬁ)/§(hk#), H(K) = e HeXT, and haw,, (K) =E,(K) 04}
—Ey/(K). It can be shown that bot, anday, are zero in the

absence of disorder, and o021 i
o’ :—EE (fe_—fp )ki(az_ Y) ~kdaBy + vBJ O 6 & 10 12 14
Xy rTﬁ - k,— Kk,+ wi_ ! E (meV)
(5) FIG. 2. The spin Hall conductivity as a function of energy for

— ok — 3 )24+ + ok + 32112 . different directions of the magnetic field. The anglesi betw@and
wherefio, =20 (akt 7Ky = By)"+ (YKt aky+ B A typi x axis are 0, 30, 45, 60, and 90°. The parametersrire0.024n,

cgl result for the SHC as a function of energy is pIo;tEed N ,=6% 109 eV cm, y=0, andB=6.52 T (g’ =15). The bottoms of
F|g. 2. For the special case ¢£0, the degenerate poif lower or upper bands and the degenerate energy af. gh=
=B X2l a, andE.=(%2/2m")(B8/ ). For > a?/2, which is  -3.4 meV,E, ,;,=2.27 meV, ancE.=3.54 meV.
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a, v, and 8.2 While evaluating the integral in Eq5), it is

more convenient to shift the origin ig. Then the,é depen-
dence ofw,_ in the denominator can be eliminated,

hw,_= 2k(a? + ¥? + 2aysin 2¢)Y? = 2kg(¢),  (6)

where the magnitudk and polar anglep are relative to the

new origink,. Thek integration now can be carried out ana-

lytically,
__et?al= 2 (77 () - K(d))coS ¢
YT 4m (2m)? o =)
_en?apy+ B (77 (@K (P)cosd
am - (2m)* o*(¢) !

()
wherek, are the lower and upper bounds of thmtegration.

As long as the energy is abot&, the values ok_ andk, are
unique[see Fig. 1o)],

.(6) = - ko COS B ) = 59(9)

+\[ko cos = o) + ANg($)/2*+E~E., (8)

where ¢, is the angle betweek, and thex axis. From Eq.

PHYSICAL REVIEW B 71, 085315(2005

1G%,1/(€/8 )
—

0
Bx (T) 15-15

FIG. 3. Spin Hall conductivity plotted as a function of the in-
plane magnetic fiel®. There is a plateau in the middle when the
magnetic field is weak. For stronger magnetic field beyond the pla-
teau region, a circle of cusfidge) is clearly visible. Contours of
the surface are projected onto the plane below. Relevant parameters
are specified in the text.

(= )2
where ¢ is a constant of the order of electron density. For
larger magnetic field, the degenerate point is driven out of
the Fermi sea and the SHC could be enhanced or reduced,
depending on the direction & (similar to the behavior in

Fig. 2. The circle of cusgridge) surrounding the plateau is
caused by the crossing pfand the bottom of the upper band

B2+ dayBuBy+ Bo={ (10)

(8), one may not expect that the SHC would be a constant i, .. (see Fig. 2 Split cusps are visible in Fig. 3 in over

energy, since botk_ andk, depend on energlg explicitly.
Nevertheless, we can show that the integrals in Egare
independent of energy. Substitute the difference,

k-(¢) —ki(¢) =9(¢) + [ko cOL b = ) — 9()/2]* + E — E-
—\[ko cod(¢p = ) + 9(#)/2P +E~Ex, (9)

to the first integral in Eq(7), we find that the first terng(¢)
contributese/ 87 to the SHC. The first square root in E®)
is equal to the second one after the shkift> ¢+ Since
both cod ¢ andg(¢) in Eq. (7) are invariant undeg— ¢

+ 17, these two terms in Eq9) would cancel with each other

after integration. Similarly, for the second term in E@),
one can show that the ratia(¢)/k,(¢) is invariant under
¢— ¢+ . Therefore, the second integral in E@) vanishes
since the cogb in the numerator changes sign aftetrao-
tation.

The proof above is valid foE>E.. At the degenerate
energy E=E., the denominatow,_ is zero and the proof

above does not apply, but it still can be proved that the SH(%h

converges to the value/8= without showing any singular
behavior atE=E..

In Fig. 3, we show the SHC as a function of the in-plane

magnetic fieldB at a fixed electron density. For smaller
magnetic field, the degenerate enelgyis lower than the
chemical potential. Therefore, there is a plateau \th

half of the ridge, which is due to the-crossing ofu and

E. min- That is, when the magnetic field is increasing at a
fixed angle, because of the complex shift of the bottoms of
energy surfaces, the chemical potentiéB) could fall below
E.min(B) after going through the first ridge au(B,)

=E. min(By), then rise to touch the bottom of the upper band
again atu(B,) =E, nin(B2) (B,>B;), where the second ridge
(or cusp is formed.

The Rashba and Dresselhaus couplings in Fig. 3aare
=6x10%V cm andy=2x 10%V cm?2 We choose the ef-
fective massm’' =0.024n, and effectiveg-factor g"=15 for
electrons in bulk InAs. The electron densityis fixed at

5.7x 10%% cn? during the B scan. The ranges of in-plane
magnetic field are 15 T in both directions. Based on these
realistic parameters, such angular variation of SHC might be
tested in future experiments. Different material parameters,
such agn’ andg’, could alter the range of appropriateind

B by one or two orders of magnitude. In general, it is better
to choose materials with a large productrofg” to reduce

the magnetic field strength requirédl.

At the end of the paper, we comment briefly on whether
e in-plane magnetic field could generate a charge Hall cur-
rent in the Rashba-Dresselhaus system. Replacing the spin
currentj? in Eq. (4) by electric currenj,, the Hall conduc-
tivity for the N\-band(A=+) can be written &

& N
=7 2 0K,

(11
h K filled

=e/8m at the center of Fig. 3. The plateau has an elliptical

boundary defined by the equatign=E-, or, equivalently,

where the Berry curvature for thé, \) state is
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" KN oo KNSR ool KNY = (R 0o KRN (o] KA
0, @=i 3, ENRARMURN IoyRA) = Rl JRAYRA 2R,

- (12)
N #EN w)z\}\,(k)

It is easy to show that the Berry curvature is zero at ekery =€°/(2h) (A independent'® which would give oy,=oy,

except at the degenerate point where the formula above doesr, =€?/h when both bands are populated. This would im-
not apply. However, one can preform a line integral along arply the counter intuitive result that the system exhibits
arbitrary contour that encloses the degenerate point to obtaigtharge Hall effect even in the small spin-orbit coupling

the Berry phase, limit. 25
L9 For the generic situation in which bothand,é are non-
I)y= 56 dk-<k,)\|lﬁ—|2|k,>\> =-sgra®-y)\m, (13)  zero, the topology of the one dimensional Fermi surface can

be different from those described in the previous paragraph
in which sgn(a®-7%)=1, 0, —1 when &? is larger than, (see Fig. L Butitis not difficult to see that the conclusion of
equal to, or smaller thag?. This is basically the same result null charge Hall current remains valid.

as that of3=0, and reflects the fact that the Berry phase is It i possible to reveal the nonzero Berry curvature by
topological in nature and is not altered by the smooth distor2dding a very smallso that orbital quantization can be ne-

tion of the energy surfaces. We note that the resultin(Eg). ~ 9lected perpendicular magnetic field to remove the point
differs slightly from that(for [;,:0) in Ref. 13, in which the degeneracy. When the chemical potential is within the Zee-

signs ofl", andT_ are the samédiscussed below From the man gap, only the lower band is*filled but now the point of
nonzero Berry phase, one can infer that the Berry curvaturBigh curvature is included in thk-integration in Eq.(11).
is singular at the degenerate poinf),(K)=-sgr(a? Therefore, wheru is within the Zeeman gap, the Hall con-

- : 26
—PAmd(k-K), which is different from the usual ductance isroughly equal &/ (2h). _
monopole-field-like Berry curvature. The result above is_ N summary, crucial energy scales in the Rashba-
valid for the Rashba-Dresselhaus system in an arbitrary inPreSselhaus system under an in-plane magnetic field are: the
plane magnetic field. bottoms of the spin-split bands, ,,, the degenerate energy

Despite the nonzero Berry phase, the Hall conductance df+» @nd the chemical potential. All of these energies de-
the system remains zero for whole range of the chemicapend on the applied magnetic field. By shifting the _chemlcal
potential. To illustrate this point, let us consider the simplerPoténtial u throughE, i, and E., the SHC could first be

p ” Ao . . enhanced(or reduced and show a cusp, then become a
pure” Rashba systerfy=0,5=0). If the chemical potential .material-independent constant. Whether the SHC is en-

is below the deggperate ppint, then. only the lower band "fianced or reduced depends on, and can be controlled by, the
populated and thk integral in Eq.(11) is performed over an  jrection of the magnetic field. Finally, we caution that the
annular region. The result of integration using E&il) iS  charge Hall conductivity depends subtly on the choice of

zero since the singularity of Berry curvaturenistlocated in - gjgenstates. As far as we know, the SHC is not influenced by
the annulus. If the chemical potential is above the degenerat§,ch subtle choice of eigenbasis.

point, then both bands are populat@tkegenerate point in-

cluded inbothcase§ andoy, =0y, +0;,=0. Therefore, there The author is grateful to Dr. M.F. Yang for numerous
exists no charge Hall current no matter the chemical potenhelpful discussions. This work is supported by the National
tial is below or above the degenerate point. Different choicesScience Council under Contract No. NSC 92-2112-M-003-
of bases in Eq(3) may lead to different results such eg 011.

1S. Murakami, N. Nagaosa, and S. C. Zhang, ScieB0#& 1348 Giuseppe lannaccone, Phys. Rev6B, 045304(2004).
(2003; S. Murakami, cond-mat/0405003. 6Gonzalo Usaj and C. A. Balseiro, Phys. Rev.7®, 041301R)

2E. I. Rashba, Sov. Phys. Solid Sta2¢1224(1960; Y. A. Bych- (2004); L. P. Rokhinson, Y. B. Lyanda-Geller, L. N. Pfeiffer, and
kov and E. |. Rashba, JETP Let89, 78 (1984. K. W. West, Phys. Rev. Lett93, 146601(2004.

3G. Dresselhaus, Phys. Re{00, 580 (1955. 7M. Governale and U. Zulicke, cond-mat/0407036, and the refer-

4lgor Zutic, Jaroslav Fabian, and S. Das Sarma, Rev. Mod. Phys. ences therein.
76, 323 (2004; W. Zawadzki and P. Pfeffer, Semicond. Sci. 8Janine Splettstoesser, Michele Governale, and Ulrich Zulicke,
Technol. 19, R1 (2004. Phys. Rev. B68, 165341(2003; Shun-Qing Shen, Zhi-Jian Li,
5S. Datta and B. Das, Appl. Phys. Le@6, 665(1990; Marco G. and Zhongshui Ma, Appl. Phys. Let84, 996 (2004).
Pala, Michele Governale, Jurgen Konig, Ulrich Zulicke, and 9B. I. Halperin, Ady Stern, Yuval Oreg, J. N. H. J. Cremers, J. A.

085315-4



EFFECT OF IN-PLANE MAGNETIC FIELD ON THE. PHYSICAL REVIEW B 71, 085315(2005

Folk, and C. M. Marcus, Phys. Rev. Le&6, 2106(2001); W. H 170l'ga V. Dimitrova, cond-mat/0407612.

Kuan, C. S. Tang, and W. Xu, cond-mat/0403098. 18Some other cautionary remarks regarding the study of spin cur-
10A short but insightful review on spintronics can be found in M. I rent in spin-orbit coupled systems can be found in Emmanuel I.
Dyakonov, cond-mat/0401369. Rashba, cond-mat/0408119.

Jairo Sinova, Dimitrie Culcer, Q. Niu, N. A. Sinitsyn, T. Jung- 1oy N\ Sheng and Z. Y. Weng, Phys. Rev.3, R11070(1996; S.
wirth, and A. H. MacDonald, Phys. Rev. Let92, 126603 K. Yip, ibid. 65, 14 4508(20’02) ' '

(2004; Dimitrie Culcer, Jairo Sinova, N. A. Sinitsyn, T. Jung- 5 _ Fig. 1(a), there are two contours since the bottoms of both

wirth, A. H. MacDonald, and Q. Niubid. 93, 046602(2004).
I2N. A. Sinitsyn, E. M. Hankiewicz, Winfried Teizer, and Jairo energy bands are lower than the degenerate energy and both

Sinova, Phys. Rev. B0, 081312R) (2004 bands are populated. In some range of parameters, the bottom of
13shun-Qing Shen, Phys. Rev. B, 081311R) (2004. the upper band could coincide with the degenerate point. In that
14A. A. Burkov, Alvaro S. Nunez, and A. H. MacDonald, Phys. _ case, there is only one contour in Figall

Rev. B 70, 155308(2004. 21The only exception is when=1y, which yields zero SHC.

153, 1. Inoue, G. E. W. Bauer, and L. W. Molenkamp, cond-mat/>’Emmanuel I. Rashba, Physica(Emsterdam 20, 189 (2004.
0402442; Ol'ga V. Dimitrova, cond-mat/0405339v2; E. G. 28However, usually there is an anticorrelation between the magni-
Mishchenko, A. V. Shytov, and B. |. Halperin, Phys. Rev. Lett.  tudes of these two parameters. See C. Kielantum Theory of
93, 226602(2004; A. Khaetskii, cond-mat/0408136; R. Rai- Solids(Wiley & Sons, New York, 1968 Chap. 14.
mondi and P. Schwab, cond-mat/0408233. 24Masahito Takahashi, Yasuhiro Hatsugai, and Mahito Kohmoto, J.

16K. Nomura, Jairo Sinova, T. Jungwirth, Q. Niu, and A. H. Mac- Phys. Soc. Jpn65, 529(1996.

Donald, cond-mat/0407279; Branislav K. Nikolic, Liviu P. 25The eigenstates in Eq3) are related to those in Ref. 13 by a
Zarbo, and Satofumi Souma, cond-mat/0408693; L. Sheng, D. singular gauge transformation. The Chern number would be dif-
N. Sheng, and C. S. Ting, cond-mat/0409038; E. M. Hank- ferent under such a singular gauge transformation.

iewicz, L. W. Molenkamp, T. Jungwirth, and Jairo Sinova, Phys.?®See Eq(15) in Dimitrie Culcer, Allan MacDonald, and Qian Niu,
Rev. B 70, 241301R) (2004). Phys. Rev. B68, 045327(2003.

085315-5



