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Quantum phase transition in spin-% XX Heisenberg chain with three-spin interaction
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The quantum phase transition in the séirxx Heisenberg chain model with three-spin interaction is
studied. Using the Jordan-Wigner transformation, several thermodynamic, as well as thermal and spin transport
quantities of the system are calculated exactly. It is shown that the three-spin interaction influences the
calculated quantities and leads to characteristic features of the quantum phase transition. The effects of a finite
magnetic field on the magnetic moment and magnetic susceptibility are also discussed.
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One of the most important ideas emerging from the studverse scattering method. Their Hamiltonian can be expressed
ies of condensed matter physics in recent years is the concegs
of quantum criticality: A quantum critical point marks a
zero-temperature phase transition between different ground N
states of a many-body system as a result of change in param- H= > -ISS, +9Y,, +HASS, ) - IS, 5SS,

eters of the underlying Hamiltonian. Precisely at the quan- 1=1

tum critical point, the system has no characteristic length or _ +A _

energy scale, and shows power-law spatial correlations and 159 + AT~ F4S)

gapless excitations. +AS,9S - SLYS L (1)

One-dimensionallD) magnetic systems exhibit a variety
of interesting phenomena signifying their quantum spin nawhere §* (a=x,y,2) are spin operators 06=1/2 spin on
ture. Thus they have been the subject of intense theoreticaite | and N is the total number of spins] is the nearest-
and experimental studies. A great number of spin chain modaeighbor Heisenberg exchange couplidgjs the three-spin
els have been proposed and investigated with various rang#yeraction strength, and represents the anisotropy. This
of interaction, spin representations and anisotropies. The efodel exhibits several quantum phases depending on the pa-
fects of the spin being coupled with other degrees of freedonf@meters)’/J andA.** The same Hamiltonian is used in the
have also been studied. Despite being unrealistic in somstudy of current-carrying states for the system wdtily the
cases, the investigation of exactly solvable 1D quantum spifearest-neighbor interactions, where the three-spin terms
models can provide deep insight for understanding the chaplay the role of the Lagrange multiplirin addition, the
acteristic  phenomena occurring in real quasi-onednclusion of four-spin interactions has also been
dimensional magnets. Moreover, the study of transport aninhvestigated. We shall apply the Jordan-Wigneiw) trans-
response properties in exactly solvable 1D correlated ferformation to the XXZ chain,
mion systemge.g., the spinless fermion, the Hubbard, and 1
other modelshas long been an important field of theoretical 1
research. g g P Sx = EH (1- zclcn)(CIJr +0);
In this paper, we revisit the isotropic sp§1XY (or spin- i
% XX) chain model, which is related to the 1D antiferromag-
net such as GE€oCl,.2 Theoretically, the spi@- XX chains
provide an excellent ground for rigorous study of various
properties of low-dimensional quantum magnetic systéms.
By means of the Jordan-Wigner transformation, with which 1
the spin model can be mapped onto a system of noninteract- S= C|TC| ~ 2 2
ing spinless fermions, many thermodynamic calculations can ) )
be performed exactly. Because the model does not involvdlotice that the Ising term in the XXZ model would lead to
any competing interactions, there is no quantum critical pointnteracting JW fermions. But wheA=0, Hamiltonian(1)
in this system, however, Here we shall explore an interesting@" be reduced to a free spinless fermion model, despite the
spin4 XX chain with three-spin interactions. This model not Pr€Sence of the three-spin term,
only exhibits a quantum critical point, but also is exactly N
;olvablt_a. Therefore the analysis Qf the effects of three-spin H=> | - E(CFC|+1+ h.c)+ J_f(clfcm_ he)l, (3
interactions on the thermodynamic, as well as thermal and =L 2 4i
spin transport properties can be studied in details.
The spin—% XXZ chain with three-spin interaction was which can be diagonalized by means of the Fourier transfor-
constructed by Tsveltfkand Frahrh using the quantum in- mation. As a consequence,

1 -1
=11 -cpa-2clcy;
2i 4
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H=2 s(Kcice (4) O T oo

. -0.35 lo.25
where the energy dispersion 3 -0.40 -0.202
« %_0'457 -0.1535

e(k) =—J| cosk — — sin(2K) |, (5) .. 10.10

2 0501 ~J0.05

with a=J"/J.

It is apparent that the energy dispersion of the spinless
fermion has the following features. When<1, there are
only two Fermi points at k-=/2, the same feature as that FIG. 1. The ground state ener@(«)/NJ and the generalized
of the isotropic XY model. But whem exceeds the critical Stiffnessz(a)/NJ versus the parameter.
value a,=1, there are two negative-energy regions kin
space, and four Fermi points appear. The two additional 1 N 1 (™ 1
Fermi points appear &f=arcsir(1/a) andkZ=7—-k?. In the M (a) = NE (SH= 2—] O[- (k) ]dk— 5= 0. (9
thermodynamic limit, the ground state of the system corre- I=1 T =m
sponds to the configuration where all the states witk) o i
<0 are filled ands(k)>0 are empty. Thus in the case of Hence for all values o, the magnetization is zero. That is,

@< a,, the ground state of the system corresponds to thi1e ground state of the new phase>1) exhibits no mag-
configuration where all states witk| <k are filled. While netic moment either. To characterize the ground state of the

for &> a, all the states with kF<k<k,1: andkF<k<k,% are New phase, we study also the scalar chirality parameter,

. . . i i i 10
filled. In this regard, it is naturally expected that there shouldVhich is defined by
occur a quantum phase transition whegets across its criti-

053005 70 15 20 25 3.9
o

cal valuea,. The new phaséxr> a,) is then characterized by 1 N

two branches of incommensurate excitations, which are both 0.= NE (S-1° S X Su)- (10)
gaplesgsee latey. It is also important to note that because of h

the presence of three-spin interactidn(a # 0), (k) is not : : .

symmetric under the change f-—k. This is in contrast to Itis obtained analytically that

the isotropic XY model. Therefore, one expects naturally that 0 a<1

in the presence of the three-spin interaction, some remark- o

able changes of the thermodynamic and transport properties O a) = i(l _i) -1 (11)
of spin chains will occur. 2 2) ¢ '

We first investigate the ground state energy of the system,
Thus the ground state of the new phase is a chiral state
Eo=2 O[-&(K)]s(k). (6)  (0,>0) with gapless excitations. It is separated by the criti-
K cal pointa.=1 from the ground state of norm@D,=0) gap-
Here the step functio®(x)=1 whenx>0 and vanishes oth- less phase.

erwise. A simple calculation gives In Fig. 2, we present the density of stat€0S) of spin-
less fermions,

1
-— a1,
Eo(a)/JN= ) P(w,a)=% Jw-eK)], (12
—2i<l+a> a>1.

for different values of the parametar Whena=0, there are
One can define a generalized stiffnessy(a) only two peakgvan Hove singularitiesfor p(w, a), occur-
=-#Eq(a)/ #a,® which is then given by ring at the two band edgd®=+J). When 0< a< a, there
appears a broad peak at the Fermi surface0). With the

0 asl, increase ofa, the broad peak becomes sharper. It evolves
() JN=9 1 1 (8) into a very sharp peak at=q, [see Fig. 2c)], reflecting the
aae & >1. flat-band behavior nede=7/2. While for a> a,, the single

sharp peak splits into two and locate at the two sides of the
In Fig. 1, we plot the ground state ener@y(a) and the Fermi surface. These strong DOS peaks near or right at the
generalized stiffnesg(a) versus the parameter. It is obvi-  Fermi surfacdfor o= a;) are the main causes to the anoma-
ous that ata=«, the generalized stiffness is singular. This lous behaviors in various physical properties. In the follow-
singularity marks the quantum phase transition in the grounéhg, we shall study the low-temperature behaviors of various

state of the system as is varied® thermodynamic and transport quantities exactly.
We next calculate the magnetic moment for the ground First, we consider the specific heat, which is given by
states, (kg=1)

064405-2



QUANTUM PHASE TRANSITION IN SPIN-% XX...

2.5

2.0 o=

plw.a)d

0.5}

0.0 0.5 1.0

w/J

-1.0 -0.5

o=1

plo,o))

00 05 1.0

(© A

PHYSICAL REVIEW B 70, 064405(2004

20}
o=0.5

1.5¢

1.0+

plw,0)J

0.5+

0.0

w/J

1.5

1.2| 0=2

0.9}

plw,a))

0.6 4

0.0 L L .
) -1 0 1 2
() o/J

FIG. 2. The spinless fermion density of stapg®, «)J versus the scaled energy/ J for different values of.
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Heref is the Fermi distribution function. The specific heat of

the system as a function of temperaturescaled toJ is
shown in Fig. 3 for different values ok. The anomalous

temperature dependence in the vicinity of the quantum criti-

cal point is clearly seen. In contrast to the=0 case, the

specific heat starts to gain more weight at the low tempera;
tures whem# 0. This is mainly caused by the broad peak of

FIG. 3. The specific heat of the systel{iT, «) versus the scaled
temperaturel/J for different values ofw.

the spinless fermion DOS. Of most interest, a second peak
structure in heat capacity appears at low temperature when
a>a., a manifestation of the strong DOS peaks near the
Fermi surface.

Another thermodynamic quantity is the magnetic suscep-
tibility given by

x(T,a)=2 -

k

Ae]| _ 1 1
de(k) | 4T< cosHle(k)/2T]

(14)

At T=0, the magnetic susceptibility can be obtained analyti-

cally
1 1
7_71—a2 a<l,
x(a)J = 1 % (15
- a>1,
Ta -1

which diverges atv=1. In Fig. 4, the magnetic susceptibility
of the system as a function of temperature is plotted for
different values ofx. The inset shows the-dependence of
at T=0. Once again, the singulaf(«) at T=0 and a=a,
marks the quantum criticality, which shows that the magnetic
behavior of the system in the regien<1 is different from
that of the regiom:>1.

The entropy of the system can also be obtained directly
using the fermionic degrees of freedom. The calculated result
is given below,
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FIG. 4. The magnetic susceptibility of the systgiT, a)J ver-
sus the scaled temperaturéJ for different values ofa. The inset
showsy(a)J versusa at T=0.

S=>, {m[z costie(k)/2T]] - (%)tanf{s(k)/zﬂ}.
k

(16)

The numerical result oS(«,T) versus the parameter at
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FIG. 6. The short-range ordegs.m(«) of the system form
=1, 2, and 3 are plotted versus the parametat T=0.

Pi1im= = 7(Grm)’, (19)
with
2 ( 77)
— sin| m— a<l1,
mar 2
Giem=) .
—[1-(- 1)m]sin<m arcsir(—)) a=1.
mar a
(20

It is noted that becausef,,,<0, it would decrease the total

T=0.0001 is plotted in Fig. 5, in which a sharp peak at the gpin-spin correlations.

critical valuea,=1 can be observed.
Using a method adopted by Lieb, Schultz, and M&ttis
can also calculate the spin-spin correlations exactly,

P1L+m={S * Siem)
=(SFim (Yo + (S
= pIX,I+m+pIy,|+m+pIZ,|+m' (17)
It is obtained analytically that
G G Gij+m
G, G 41 G j+m-1
X — Yy — 1
PI,I+m‘P|,|+m—Z ,
GI,I—m+2 GI,I—m+3 G|,|+1
(18)
and
0.020}
. 0.015 T=0.0001J
~
> 0.010}
w
0.005}
0.000 : , ’ . . 8
0.00 0.25 0.50 0.75 1.00 1.25 1.50

o

The short-range order is given

-1 <1
2 T
pry+a(@) = (21)
Ta—1
(7761’)2 a=1.

For the correlation between the spins on sites separated by
more than one lattice constant, we give the resultarier2

and 3. Fom=2, we have

1
i
1

(ma)?

a<l,

pris2(@) = (22

While for m=3, we have
48 —
973
48a — m(3a® — 4)?
(973a)®

pry+a(@) = (23

a=1.

The numerical results fqs |.1(«), py 1+2(a@), andp j+3(a) ver-

sus the parameter are plotted in Fig. 6. From the results
above, we find the following characteristics of spin-spin cor-
relations. First, there is no long-range order, as expected,
because whem— o, p, ., approaches zero. Second, the
spin-spin correlations for the phasedn< 1 does not depend
on the value ofa, while for the new phase ia>1, it de-

FIG. 5. The entropy8(«, T) of the system versus the parameter Crease asy increases. Also, because the spin-spin correla-

a at T=0.000D.

tions of the new phase is lower than that of the normal phase,
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FIG. 8. Thermal Drude weighDg(T,a)/J? versus the scaled
FIG. 7. Spin Drude weighDg(T,@)/J versus the scaled tem- temperaturel/J for different values ofex. For easier comparison,
peratureT/J for different values ofa. The inset showdg(a)/J  the inset show®g(a)/JIT versusT/J for different o’s in the low-
versusa at T=0. temperature regime.

the spin configuration in the new phase should be more disas « increasep only for a>a,. When a=0, DT, ) at

ordered. We can see that the three-spin term causes quantyigry low T decrease quadratically with.14 Nonmonotonic

frustration, which eventually leads to the quantum phaseehavior is observed for=1 and, as expected, the low-

transition in this system. _ temperature behaviors of the spin conductivity are different
We now turn to the transport properties of the systemgqr a<aganda> ag.

Very recently, thermal and spin transport in several inte- |n a similar manner, the thermal conductiviBg of the

grable models of 1D spin systems have been studied emplogystem is given b

ing the Kubo formalism and adopting the notion of the ther-

mal and spin Drude weightd;13 which are similar to the T _ )
" J De(T) = S e T(mljen)?

Drude weight in the theory of electrical transport. Spin trans- ZNT? -
port can be measured by NMR that probes the spin-spin au- £ ;E
tocorrelation in the low-frequency limit The spin Drude e ,
weight Dg (sometimes called the spin conductivitis de- =S v(k)e(k)/2T 28
fined by'? < | coshe(k)/2T] | '
D(T) = U e ElT(mljdn)?, (24) where j=3w(k)e(k)clc, is the thermal current operator in
ZNT h the fermion representation, while in the spin representation it
EnEn is given as

whereZ is the partition function|n) and E,, are the energy N o i
states and levels of the system, and the spin current operatorj = J2>, {— —(§9:1+55.) - 2(55.,- 5SS
is given as follows: =L 8 2

N 1 _3_(1 + S

js=33 {Eﬁsﬂ - S - Al S+ S‘stgsal} - 2 et §509uS2
1=1
(25 + ia2(3+3_+4‘ SRR p (29)

In the fermion representatiomszEkv(k)clck, where the ve-
locity v(k)=de(k)/ dk=J[sink+a cog2k)]. Note that the pe- The behavior oDg(T) for differenta’s is shown in Fig. 8>
riodic boundary condition has been applied. For the presento show the characteristic difference more clearly between

spin systempDg is simply reduced to the cases ofvx<a, and a> a;, we plot Dg(T,a)/T in the
) 2 inset. Similar to the results dd{(T=0,a) (see the inset of
Dg(T,a) = 12 —ny L (26)  Fig. 7), asT—0, Dg/T is universal fora=< a, and increases
4T%" | coshie(k)/2T] as a increases beyond > «.. One can obtain analytically
At T=0, the spin conductivity is calculated to be that
2
1 as= 1! - o= l,
D=y, 1 . (27) im De(T,IT=1 (30)
« T—0 1
—<2a - —> a>1.
3 a

In Fig. 7, we plotD4T, ) of the system as a function of
temperature for different values af. The inset shows the Finally, the effects of a finite magnetic field on the mag-
Dg(a@)/J at T=0 versus the parameter. Notice that atT netic moment and the magnetic susceptibility are studied.
=0, Dg(a)/J is universalfor a< «a, and it starts to grow up When applying an external magnetic fididto the system,
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FIG. 9. The magnetic momem(h,a) and magnetic susceptibility(h,@)J of the system versus the uniform magnetic fibldor
different values ofa at T=0.

the spinless fermion energy dispersion is change@d(to  and the frustrated Kondo necklace motfeThe critical be-
=-h-Jlcogk)—(a/2)sin(2k)]. At T=0, we have calculated haviors near the cusp singularity and the saturation singular-
the magnetic momeni(h,a) and magnetic susceptibility ity can be investigated using a method adopted by Yamamoto
x(h,a)J of the system versus the uniform magnetic fiald et al’ The result is
The results are given in Fig. 9 far=0, 0.5, 1, and 2, respec-

tively. It is shown in Fig. 9 that fora<1, the magnetic M —Mcusp“{
moment and magnetic susceptibility curves shows no

anomaly in the medium field region. In contrast, tor a, ip the vicinity of the critical pointh=he,s,whereM =M

the_magnetlc moment develops a cusp in th_e medium fiel owever, in the vicinity of the critical point=hg (the satu-
region, and consequently a peak emerges in the magnetic

susceptibility. In Fig. 10, we show how the position of the ration field, we have
cusp inM(h, @) changes when varying(=«,). It is noted { 0 h=h,
that the position of the cusp moves to higher fieldaam- M - Mg | —
creases, and the cusp disappears whenc(a 1=0). Simi- -vhs—h h<h,.
lar cusp singularities have also been observed in the spin-1Ag/hen o — o, heus— hs @nd the cusp disappears. This ex-
zig-zag spin ladder, the spin-1 bilinear-biquadratic ch&in, plains nicely the behavior of the magnetization curves near
the cusp singularity in the above calculatigese Figs. 9 and

h- hcusp h> hcusp

I — (31)
= Vheyusp=h h <hgysp

(32)

0.55 . : - - - - 10). The origin of the cusp in the present model is the same
g'ig: h, — R T as that in the frustrated Kondo necklace modet.is due to
0.40 1L R ] the change of the shape of the quasiparticle energy disper-
~035F, __./ o ] sion. Forh<hg, there are four Fermi points; while for
2 030f o A y 1 h>h,, there are only two Fermi points. This sudden
s 8'38 a \,-—'}’ /./‘/ 0‘_1=0'0 1 change leads to a change of slope of the total energy at the
015F P T 0‘_1=0'2 ] critical point, and hence the cusp. Therefore, these cusps
o1of .27 7 a_1=0.5 ] again reflect the competition between the two-spimnd
0.05 e, =1.0 ] three-spind’ interactions.
0-0%_0 02 04 05 08 10 12 14 In summary, based on an exactly solvable model of the

h/J' spin4 XX Heisenberg chain with three-spin interactions, we
have studied the thermodynamic and transport properties for
FIG. 10. The magnetic momeM,(h, @) of the system versus the system. Quantum phase transition is realized in this ex-
the uniform magnetic fieldh (in units of J’, instead ofJ) for «  actly solvable model, which is caused by the competition
=a, at T=0. In the figurehs is the saturation field, anio,,spis the ~ between the two-spid and three-spin)’ interactions. The
field at the cusp. behaviors of density of states, magnetic susceptibility, spe-
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cific heat, entropy, spin correlation, spin and thermal conduczero, while ours can be nonzero whan-1 [see Eq(11)].
tivities, and magnetic moment near the critical poidt/J  Third, the specific heat of their quantum phase with lagge
=1) are all studied exactly. does not have the two-peak structure, which differs from our
Note added in proofAfter the paper was submitted, we Fig- 3. This shows that their quantum phases on both sides of
were informed by the referee that Titvinidze and Japatftize the critical valuegwhich are numerically different for these
has published a similar work. Their Hamiltonian contains™W© modelg are not the same as ours. Besides, the spin and
three-spin terms of the form=, (SF,,S,+ IS, Ss,). thermal transport properties are not discussed in their

There also exists two quantum phases in this model, whicb‘;i)aper%8

are separated by a critical value @f=2. Nevertheless, there This work is supported by the NSC of Taiwan under

are several crucial differences between these two modelgrant Nos. 91-2112-M-003-019 and 92-2112-M-003-009,
First, their ground state has a spontaneous magnetization fand by the National Natural Science Foundation of the Peo-
almost all values ofy, while ours always has zero magneti- ple’s Republic of China under Grant No. 19974001 and the
zation. Second, the scalar chiral parameter for their model iEducation Commission of Anhui.
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