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The quantum phase transition in the spin-1
2 XX Heisenberg chain model with three-spin interaction is

studied. Using the Jordan-Wigner transformation, several thermodynamic, as well as thermal and spin transport
quantities of the system are calculated exactly. It is shown that the three-spin interaction influences the
calculated quantities and leads to characteristic features of the quantum phase transition. The effects of a finite
magnetic field on the magnetic moment and magnetic susceptibility are also discussed.
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One of the most important ideas emerging from the stud-
ies of condensed matter physics in recent years is the concept
of quantum criticality.1 A quantum critical point marks a
zero-temperature phase transition between different ground
states of a many-body system as a result of change in param-
eters of the underlying Hamiltonian. Precisely at the quan-
tum critical point, the system has no characteristic length or
energy scale, and shows power-law spatial correlations and
gapless excitations.

One-dimensional(1D) magnetic systems exhibit a variety
of interesting phenomena signifying their quantum spin na-
ture. Thus they have been the subject of intense theoretical
and experimental studies. A great number of spin chain mod-
els have been proposed and investigated with various ranges
of interaction, spin representations and anisotropies. The ef-
fects of the spin being coupled with other degrees of freedom
have also been studied. Despite being unrealistic in some
cases, the investigation of exactly solvable 1D quantum spin
models can provide deep insight for understanding the char-
acteristic phenomena occurring in real quasi-one-
dimensional magnets. Moreover, the study of transport and
response properties in exactly solvable 1D correlated fer-
mion systems(e.g., the spinless fermion, the Hubbard, and
other models) has long been an important field of theoretical
research.

In this paper, we revisit the isotropic spin-1
2 XY (or spin-

1
2 XX ) chain model, which is related to the 1D antiferromag-
net such as Cs2CoCl4.

2 Theoretically, the spin-12 XX chains
provide an excellent ground for rigorous study of various
properties of low-dimensional quantum magnetic systems.3

By means of the Jordan-Wigner transformation, with which
the spin model can be mapped onto a system of noninteract-
ing spinless fermions, many thermodynamic calculations can
be performed exactly. Because the model does not involve
any competing interactions, there is no quantum critical point
in this system, however. Here we shall explore an interesting
spin-12 XX chain with three-spin interactions. This model not
only exhibits a quantum critical point, but also is exactly
solvable. Therefore the analysis of the effects of three-spin
interactions on the thermodynamic, as well as thermal and
spin transport properties can be studied in details.

The spin-12 XXZ chain with three-spin interaction was
constructed by Tsvelik4 and Frahm5 using the quantum in-

verse scattering method. Their Hamiltonian can be expressed
as

H = o
l=1

N

− JsSl
xSl+1

x + Sl
ySl+1

y + DSl
zSl+1

z d − J8hsSl−1
x Sl

zSl+1
y

− Sl−1
y Sl

zSl+1
x d + DsSl−1

y Sl
xSl+1

z − Sl−1
z Sl

xSl+1
y d

+ DsSl−1
z Sl

ySl+1
x − Sl−1

x Sl
ySl+1

z dj, s1d

where Sl
a sa=x,y,zd are spin operators ofS=1/2 spin on

site l and N is the total number of spins,J is the nearest-
neighbor Heisenberg exchange coupling,J8 is the three-spin
interaction strength, andD represents the anisotropy. This
model exhibits several quantum phases depending on the pa-
rametersJ8 /J andD.4,5 The same Hamiltonian is used in the
study of current-carrying states for the system withonly the
nearest-neighbor interactions, where the three-spin terms
play the role of the Lagrange multiplier.6 In addition, the
inclusion of four-spin interactions has also been
investigated.7 We shall apply the Jordan-Wigner(JW) trans-
formation to the XXZ chain,

Sl
x =

1

2p
n=1

l−1

s1 − 2cn
†cndscl

† + cld;

Sl
y =

1

2i
p
n=1

l−1

scl
† − clds1 − 2cn

†cnd;

Sl
z = cl

†cl − 1
2 . s2d

Notice that the Ising term in the XXZ model would lead to
interacting JW fermions. But whenD=0, Hamiltonian(1)
can be reduced to a free spinless fermion model, despite the
presence of the three-spin term,

H = o
l=1

N F−
J

2
scl

†cl+1 + h.c.d +
J8

4i
scl

†cl+2 − h.c.dG , s3d

which can be diagonalized by means of the Fourier transfor-
mation. As a consequence,
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H = o
k

«skdck
†ck, s4d

where the energy dispersion

«skd = − JFcosk −
a

2
sins2kdG , s5d

with a;J8 /J.
It is apparent that the energy dispersion of the spinless

fermion has the following features. Whenaø1, there are
only two Fermi points at ±kF=p /2, the same feature as that
of the isotropic XY model. But whena exceeds the critical
value ac=1, there are two negative-energy regions ink
space, and four Fermi points appear. The two additional
Fermi points appear atkF

1 =arcsins1/ad andkF
2 =p−kF

1. In the
thermodynamic limit, the ground state of the system corre-
sponds to the configuration where all the states with«skd
ø0 are filled and«skd.0 are empty. Thus in the case of
a,ac, the ground state of the system corresponds to the
configuration where all states withuku,kF are filled. While
for a.ac, all the states with −kF,k,kF

1 andkF,k,kF
2 are

filled. In this regard, it is naturally expected that there should
occur a quantum phase transition whena gets across its criti-
cal valueac. The new phasesa.acd is then characterized by
two branches of incommensurate excitations, which are both
gapless(see later). It is also important to note that because of
the presence of three-spin interactionJ8 saÞ0d, «skd is not
symmetric under the change ofk→−k. This is in contrast to
the isotropic XY model. Therefore, one expects naturally that
in the presence of the three-spin interaction, some remark-
able changes of the thermodynamic and transport properties
of spin chains will occur.

We first investigate the ground state energy of the system,

E0 = o
k

Qf− «skdg«skd. s6d

Here the step functionQsxd=1 whenx.0 and vanishes oth-
erwise. A simple calculation gives

E0sad/JN=5 −
1

p
a ø 1,

−
1

2p
S 1

a
+ aD a . 1.6 s7d

One can define a generalized stiffness,hsad
;−]2E0sad /]2a,8 which is then given by

hsad/JN= 5 0 a ø 1,

1

p

1

a3 a . 1.6 s8d

In Fig. 1, we plot the ground state energyE0sad and the
generalized stiffnesshsad versus the parametera. It is obvi-
ous that ata=ac the generalized stiffness is singular. This
singularity marks the quantum phase transition in the ground
state of the system asa is varied.8

We next calculate the magnetic moment for the ground
states,

Mzsad =
1

N
o
l=1

N

kSl
zl =

1

2p
E

−p

p

Qf− «skdgdk−
1

2
= 0. s9d

Hence for all values ofa, the magnetization is zero. That is,
the ground state of the new phasesa.1d exhibits no mag-
netic moment either. To characterize the ground state of the
new phase, we study also the scalar chirality parameter,
which is defined by9,10

Ok =
1

N
o
l=1

N

kSl−1 ·Sl 3 Sl+1l. s10d

It is obtained analytically that

Oksad = 5 0 a ø 1,

1

2p
S1 −

1

a2D a . 1.6 s11d

Thus the ground state of the new phase is a chiral state
sOk.0d with gapless excitations. It is separated by the criti-
cal pointac=1 from the ground state of normalsOk=0d gap-
less phase.

In Fig. 2, we present the density of states(DOS) of spin-
less fermions,

rsv,ad = o
k

dfv − «skdg, s12d

for different values of the parametera. Whena=0, there are
only two peaks(van Hove singularities) for rsv ,ad, occur-
ring at the two band edgessv= ±Jd. When 0,a,ac, there
appears a broad peak at the Fermi surfacesv=0d. With the
increase ofa, the broad peak becomes sharper. It evolves
into a very sharp peak ata=ac [see Fig. 2(c)], reflecting the
flat-band behavior neark=p /2. While for a.ac, the single
sharp peak splits into two and locate at the two sides of the
Fermi surface. These strong DOS peaks near or right at the
Fermi surface(for aùac) are the main causes to the anoma-
lous behaviors in various physical properties. In the follow-
ing, we shall study the low-temperature behaviors of various
thermodynamic and transport quantities exactly.

First, we consider the specific heat, which is given by
skB;1d

FIG. 1. The ground state energyE0sad /NJ and the generalized
stiffnesshsad /NJ versus the parametera.
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CsT,ad =
]kHlT

]T
=

]

]THok

«skdff«skdgJ
= o

k
H «skd/2T

coshf«skd/2TgJ2

. s13d

Here f is the Fermi distribution function. The specific heat of
the system as a function of temperatureT scaled toJ is
shown in Fig. 3 for different values ofa. The anomalous
temperature dependence in the vicinity of the quantum criti-
cal point is clearly seen. In contrast to thea=0 case, the
specific heat starts to gain more weight at the low tempera-
tures whenaÞ0. This is mainly caused by the broad peak of

the spinless fermion DOS. Of most interest, a second peak
structure in heat capacity appears at low temperature when
a.ac, a manifestation of the strong DOS peaks near the
Fermi surface.

Another thermodynamic quantity is the magnetic suscep-
tibility given by

xsT,ad = o
k

− H ]ff«skdg
]«skd J =

1

4T
o
k

1

cosh2f«skd/2Tg
.

s14d

At T=0, the magnetic susceptibility can be obtained analyti-
cally

xsadJ =5
1

p

1

1 − a2 a , 1,

1

p

2a

a2 − 1
a . 1,6 s15d

which diverges ata=1. In Fig. 4, the magnetic susceptibility
of the system as a function of temperature is plotted for
different values ofa. The inset shows thea-dependence ofx
at T=0. Once again, the singularxsad at T=0 and a=ac

marks the quantum criticality, which shows that the magnetic
behavior of the system in the regiona,1 is different from
that of the regiona.1.

The entropy of the system can also be obtained directly
using the fermionic degrees of freedom. The calculated result
is given below,

FIG. 2. The spinless fermion density of statesrsv ,adJ versus the scaled energyv /J for different values ofa.

FIG. 3. The specific heat of the systemCsT,ad versus the scaled
temperatureT/J for different values ofa.
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S= o
k
Hlnf2 coshf«skd/2Tgg − S«skd

2T
Dtanhf«skd/2TgJ .

s16d

The numerical result ofSsa ,Td versus the parametera at
T=0.0001J is plotted in Fig. 5, in which a sharp peak at the
critical valueac=1 can be observed.

Using a method adopted by Lieb, Schultz, and Mattis,3 we
can also calculate the spin-spin correlations exactly,

rl,l+m = kSl ·Sl+ml

= kSl
xSl+m

x l + kSl
ySl+m

y l + kSl
zSl+m

z l

= rl,l+m
x + rl,l+m

y + rl,l+m
z . s17d

It is obtained analytically that

rl,l+m
x = rl,l+m

y =
1

4*
Gl,l+1 Gl,l+2 . . . Gl,l+m

Gl,l Gl,l+1 . . . Gl,l+m−1

. . . . . . . . . . . .

. . . . . . . . . . . .

Gl,l−m+2 Gl,l−m+3 . . . Gl,l+1

* ,

s18d

and

rl,l+m
z = − 1

4sGl,l+md2, s19d

with

Gl,l+m =5
2

mp
sinSm

p

2
D a , 1,

1

mp
f1 − s− 1dmgsinSmarcsinS 1

a
DD a ù 1.6

s20d

It is noted that becauserl,l+m
z ø0, it would decrease the total

spin-spin correlations.
The short-range order is given

rl,l+1sad =5
p − 1

p2 a , 1,

pa − 1

spad2 a ù 1.6 s21d

For the correlation between the spins on sites separated by
more than one lattice constant, we give the results form=2
and 3. Form=2, we have

rl,l+2sad =5
1

p2 a , 1,

1

spad2 a ù 1.6 s22d

While for m=3, we have

rl,l+3sad =5
48 −p

9p3 a , 1,

48a − ps3a2 − 4d2

s9p3ad6 a ù 1.6 s23d

The numerical results forrl,l+1sad, rl,l+2sad, andrl,l+3sad ver-
sus the parametera are plotted in Fig. 6. From the results
above, we find the following characteristics of spin-spin cor-
relations. First, there is no long-range order, as expected,
because whenm→`, rl,l+m approaches zero. Second, the
spin-spin correlations for the phase ina,1 does not depend
on the value ofa, while for the new phase ina.1, it de-
crease asa increases. Also, because the spin-spin correla-
tions of the new phase is lower than that of the normal phase,

FIG. 4. The magnetic susceptibility of the systemxsT,adJ ver-
sus the scaled temperatureT/J for different values ofa. The inset
showsxsadJ versusa at T=0.

FIG. 5. The entropySsa ,Td of the system versus the parameter
a at T=0.0001J.

FIG. 6. The short-range ordersrl,l+msad of the system form
=1, 2, and 3 are plotted versus the parametera at T=0.
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the spin configuration in the new phase should be more dis-
ordered. We can see that the three-spin term causes quantum
frustration, which eventually leads to the quantum phase
transition in this system.

We now turn to the transport properties of the system.
Very recently, thermal and spin transport in several inte-
grable models of 1D spin systems have been studied employ-
ing the Kubo formalism and adopting the notion of the ther-
mal and spin Drude weights,11–13 which are similar to the
Drude weight in the theory of electrical transport. Spin trans-
port can be measured by NMR that probes the spin-spin au-
tocorrelation in the low-frequency limit.11 The spin Drude
weight DS (sometimes called the spin conductivity) is de-
fined by12

DSsTd =
p

ZNT
o
m,n

Em=En

e−Em/Tukmu jSunlu2, s24d

whereZ is the partition function,unl and En are the energy
states and levels of the system, and the spin current operator
is given as follows:

jS= Jo
l=1

N F 1

2i
sSl

+Sl+1
− − Sl

−Sl+1
+ d − asSl

+Sl+2
− + Sl

−Sl+2
+ dSl+1

z G .

s25d

In the fermion representation,jS=okvskdck
†ck, where the ve-

locity vskd=]«skd /]k=Jfsink+a coss2kdg. Note that the pe-
riodic boundary condition has been applied. For the present
spin system,DS is simply reduced to

DSsT,ad =
p

4T
o
k
H vskd

coshf«skd/2TgJ2

. s26d

At T=0, the spin conductivity is calculated to be

DSsad/J = 5 1 a ø 1,

2a −
1

a
a . 1.6 s27d

In Fig. 7, we plotDSsT,ad of the system as a function of
temperature for different values ofa. The inset shows the
DSsad /J at T=0 versus the parametera. Notice that atT
=0, DSsad /J is universalfor aøac, and it starts to grow up

(as a increases) only for a.ac. When a=0, DSsT,ad at
very low T decrease quadratically withT.14 Nonmonotonic
behavior is observed fora=1 and, as expected, the low-
temperature behaviors of the spin conductivity are different
for a,ac anda.ac.

In a similar manner, the thermal conductivityDE of the
system is given by12

DEsTd =
p

ZNT2 o
m,n

Em=En

e−Em/Tukmu jEunlu2

= po
k
H vskd«skd/2T

coshf«skd/2TgJ2

, s28d

where jE=okvskd«skdck
†ck is the thermal current operator in

the fermion representation, while in the spin representation it
is given as

jE = J2o
l=1

N F−
a

8
sSl

+Sl+1
− + Sl

−Sl+1
+ d −

i

2
sSl

+Sl+2
− − Sl

−Sl+2
+ dSl+1

z

−
3a

2
sSl

+Sl+3
− + Sl

−Sl+3
+ dSl+1

z Sl+2
z

+ ia2sSl
+Sl+4

− − Sl
−Sl+4

+ dSl+1
z Sl+2

z Sl+3
z G . s29d

The behavior ofDEsTd for differenta’s is shown in Fig. 8.15

To show the characteristic difference more clearly between
the cases ofa,ac and a.ac, we plot DEsT,ad /T in the
inset. Similar to the results ofDSsT=0,ad (see the inset of
Fig. 7), asT→0, DE/T is universal foraøac and increases
as a increases beyonda.ac. One can obtain analytically
that

lim
T→0

DEsT,ad/JT=5
p2

3
a ø 1,

p2

3
S2a −

1

a
D a . 1.6 s30d

Finally, the effects of a finite magnetic field on the mag-
netic moment and the magnetic susceptibility are studied.
When applying an external magnetic fieldh to the system,

FIG. 7. Spin Drude weightDSsT,ad /J versus the scaled tem-
peratureT/J for different values ofa. The inset showsDSsad /J
versusa at T=0.

FIG. 8. Thermal Drude weightDEsT,ad /J2 versus the scaled
temperatureT/J for different values ofa. For easier comparison,
the inset showsDEsad /JT versusT/J for different a’s in the low-
temperature regime.
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the spinless fermion energy dispersion is changed to«skd
=−h−Jfcosskd−sa /2dsins2kdg. At T=0, we have calculated
the magnetic momentMsh,ad and magnetic susceptibility
xsh,adJ of the system versus the uniform magnetic fieldh.
The results are given in Fig. 9 fora=0, 0.5, 1, and 2, respec-
tively. It is shown in Fig. 9 that fora,1, the magnetic
moment and magnetic susceptibility curves shows no
anomaly in the medium field region. In contrast, fora.ac,
the magnetic moment develops a cusp in the medium field
region, and consequently a peak emerges in the magnetic
susceptibility. In Fig. 10, we show how the position of the
cusp inMsh,ad changes when varyingasùacd. It is noted
that the position of the cusp moves to higher field asa in-
creases, and the cusp disappears whena→`sa−1=0d. Simi-
lar cusp singularities have also been observed in the spin-1/2
zig–zag spin ladder, the spin-1 bilinear-biquadratic chain,16

and the frustrated Kondo necklace model.17 The critical be-
haviors near the cusp singularity and the saturation singular-
ity can be investigated using a method adopted by Yamamoto
et al.17 The result is

M − Mcusp~ H h − hcusp h . hcusp

− Îhcusp− h h , hcusp,
J s31d

in the vicinity of the critical pointh=hcusp whereM =Mcusp.
However, in the vicinity of the critical pointh=hs (the satu-
ration field), we have

M − Ms ~ H 0 h ù hs

− Îhs − h h , hs.
J s32d

When a→`, hcusp→hs and the cusp disappears. This ex-
plains nicely the behavior of the magnetization curves near
the cusp singularity in the above calculations(see Figs. 9 and
10). The origin of the cusp in the present model is the same
as that in the frustrated Kondo necklace model.17 It is due to
the change of the shape of the quasiparticle energy disper-
sion. For h,hcusp, there are four Fermi points; while for
h.hcusp, there are only two Fermi points. This sudden
change leads to a change of slope of the total energy at the
critical point, and hence the cusp. Therefore, these cusps
again reflect the competition between the two-spinJ and
three-spinJ8 interactions.

In summary, based on an exactly solvable model of the
spin-12 XX Heisenberg chain with three-spin interactions, we
have studied the thermodynamic and transport properties for
the system. Quantum phase transition is realized in this ex-
actly solvable model, which is caused by the competition
between the two-spinJ and three-spinJ8 interactions. The
behaviors of density of states, magnetic susceptibility, spe-

FIG. 9. The magnetic momentMsh,ad and magnetic susceptibilityxsh,adJ of the system versus the uniform magnetic fieldh for
different values ofa at T=0.

FIG. 10. The magnetic momentMzsh,ad of the system versus
the uniform magnetic fieldh (in units of J8, instead ofJ) for a
ùac at T=0. In the figure,hs is the saturation field, andhcusp is the
field at the cusp.
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cific heat, entropy, spin correlation, spin and thermal conduc-
tivities, and magnetic moment near the critical pointsJ8 /J
=1d are all studied exactly.

Note added in proof:After the paper was submitted, we
were informed by the referee that Titvinidze and Japaridze18

has published a similar work. Their Hamiltonian contains
three-spin terms of the form −J8ol sSl

xSl+1
z Sl+2

x +Sl
ySl+1

z Sl+2
y d.

There also exists two quantum phases in this model, which
are separated by a critical value ofac8=2. Nevertheless, there
are several crucial differences between these two models.
First, their ground state has a spontaneous magnetization for
almost all values ofa, while ours always has zero magneti-
zation. Second, the scalar chiral parameter for their model is

zero, while ours can be nonzero whena.1 [see Eq.(11)].
Third, the specific heat of their quantum phase with largea
does not have the two-peak structure, which differs from our
Fig. 3. This shows that their quantum phases on both sides of
the critical values(which are numerically different for these
two models) are not the same as ours. Besides, the spin and
thermal transport properties are not discussed in their
paper.18
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