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Energy spectrum of Bloch electrons under checkerboard field modulations
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Two-dimensional Bloch electrons in a uniform magnetic field exhibit a complex energy spectrum. When
static electric and magnetic modulations with a checkerboard pattern are superimposed on the uniform mag-
netic field, more structures and symmetries of the spectra are found, due to the additional adjustable parameters
from the modulations. We give a comprehensive report on these symmetries. We have also found an electric-
modulation induced energy gap, whose magnitude is independent of the strength of either the uniform or the
modulated magnetic field. This study is applicable to experimentally accessible systems and is related to the
investigations on frustrated antiferromagnetism.
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[. INTRODUCTION perimentally using a superconducting Nb network with peri-
odic magnetic Dy islands$. The calculations of the
When the spectrum of a two-dimension@D) Bloch  Hofstadter spectra provide the basis to study such artificial
electron in a uniform magnetic field is plotted in the energy-networks.
flux diagram, a self-similar structure with fractal property A direct observation of the Hofstadter spectrum has been
emerges. Such a complex structure, called the Hofstadterrealized using microwav&%or acoustic waved transmitting
spectrum, arises due to the commensurability between twthrough an array ofnacroscopicscatters. However, a fractal
length scales in this system: the lattice constant and the cyelectronicspectrum is significantly more difficult to be real-
clotron radius. The Hofstadter spectrum is one of the earlieszed in an usual solid, whose lattice constant is only a few
predictions of fractal structure in solid-state physics. Subseangstroms, and a magnetic field of the order of TOis
guently, it was found that not only the energy spectrum hasequired. For 10 T or less, we can only probe the part of the
self-similarity, the wave function also exhibits scaling behav-Hofstadter spectrum that reduces to the familiar Landau lev-
ior and can be analyzed using the renormalization gfoup. els with roughly equal spacings in energy. In the last decade,
Because of its beautiful structure, the Hofstadter spectrundifferent superlattice structures with much larger lattice con-
has attracted many researchers’ attention, and the spectra fstants are used to cope with this high-field probférie-
different 2D lattice symmetries have been reported. Besidesides, several physical systems are closely related to the Hof-
the square lattice, there are also triangular lattibeney-  stadter problems and offer alternative angles of investigation,
comb lattice’, Kagome lattice, and a bipartite periodic struc- for example, the studies of a superconductor in a vortex
ture with hexagonal symmetfyThese are all studied within state!® a superconducting network in a magnetic figl@nd
the framework of Bloch electrons in a uniform magnetic a junction of three quantum wiré8 Furthermore, recent ad-
field, usually assuming nearest-neighltbiN) couplingst;  vance on optical lattices makes it possible to implement a
only. Including and varying the next-nearest-neighborlattice Hamiltonian resembling the effects of magnetic fields
(NNN) couplingst, leads to band crossings accompanied bywith neutral atoms?! This offers great opportunities since
exchange of quantized Hall conductances between bhds.not only the magnetic field, but also the lattice symmetry, the
For a square lattice, detailed scaling analysis reveals a bicritpotential strength, and the relative importance of many-body
cal point att;=2t,, accompanied by interesting topological effects can be adjusted in such a system.
change of the spectrufrSpectra for systems with couplings ~ This paper is motivated by a study very different from
beyond next-nearest neighbors have also been stiflied. those mentioned above. In a recent papevlisguich and
addition, the external magnetic field, rather than being unico-workers, by using the hard-core bosons to represent the
form, can be periodically modulated with a pattern unrelatedspin degrees of freedom, and using the Chern-Simons trans-
to the original lattice. The simplest situation when a mag-formation to transmute bosons to fermions, mapped a 2D
netic lattice overlaps with the electric lattice is realized whenfrustrated antiferromagnetic problem to a Hofstadter prob-
a ferromagnetic grid is deposited on a semicondu¢tdhe  lem. This approach is subsequently used to study the magne-
interfacial stress between two materials would naturally intization properties of thel,—J, Heisenberg model on a
duce an electric grid with the same period and symmetry asquare latticé® After suitable mathematical mappings and a
the ferromagnetic grid. More generally, there can also be anean-field approximation, the magnetization problem can be
magnetic modulation with the pattern of a 1D stffmra 2D reduced to a Hofstadter problem witoth electric and mag-
checkerboartf~1° superimposes on the electric square lat-netic superstructures superimposed on the original lattice.
tice. The checkerboard configuration has been realized exFhis motivates us to consider the checkerboard superstruc-
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ture, which is related to the N&phase in the magnetization ()
problem, with congruous electramd magnetic modulations. Ny ’ N ’
Couplings up to next-nearest neighbors are considered, N , N ’
which are essential to cause magnetic frustration inJthe N 2 N L7
—J, Heisenberg modét* ol 25

In this paper, we make a comprehensive survey of the ’ N , h
symmetries of the Hofstadter spectra with field modulations. ’ N ’ N
Some of the symmetries already exist without modulations, .
such as the ones related to reversing the direction of the

magnetic flux, and shifting the flux in a plaquette by two flux 15 1 A square Iattice with checkboard field modulation. The
quanta[see itemdl) and(lll) in Sec. Il. Some of the other  yagnetic flux through the lefiright) plaguette is¢+27A ,; (¢
symmetries that are closely related to field modulations are 4 ). The scalar potentials at the lattice points indicated by
also reported. In particular, when the system is subject t@olid and empty dots ar&, and —A,,, respectively.

staggeredr fluxes, its spectrum in thE— ¢ diagram has an

up-down symmetry even with NNN couplingsee Fig. 5,

which is quite unexpected since NNN couplings usually de- pye to the modulation in thg direction and under the
stroy such a symmetryBesides the studies on symmetries, gauge choice in Eq2), the tight-binding Hamiltonian in Eq.

for systems with only NN couplings, we find a simple alge- (1) now becomes invariant under thetranslationm—m
braic connection between the spectra with and without the, 2 Thys the Bloch theorem gives

electric checkerboard field. We also find a flux-independent
energy gap induced by the electric modulatisee Fig. 3,
which can be explained by using the algebraic relation just

mentioned. for |ky|<m/2, where c,m:2(Ky)=Cnm(ky) and c,m(k,

_ This paper is org:_:mized as follows. Theoretical formula-_ m) =Cnm(k,). Therefore, the generalized Harper equation
tion on the system with checkerboard super-structure, as Wellgcomes

as the discussion of the symmetries of the energy spectra,
can be found in Sec. Il. Major features of the Hofstadter
spectra are discussed in Sec. Ill. We summarize and conclude
our results in Sec. IV. The proofs on checkerboard- -
translation symmetry of the spectrum and on the existence o¥herecn(ky) =[cq1(ky),cq o(ky)1" and
the flux-independent energy gap are given in the appendixes. ,

( —(=D"Ay —t;coq xp)e'’n

n

—ticogx)e % (—1)"Ay

fn,m:eiikymcn,m(ky) (3)

AnCn(Ky)+BnCi1(ky) +By_1Cn-1(k,) =ECy(ky), (4)

) )
Il. THEORETICAL ANALYSIS

The tight-binding Hamiltonian describing the motion of B :( —t/2 ~t;c04 77”)) ©6)
an electron in a magnetic field is given by "\ —t,coq 7,) —14/2

1 - ) with xo=ng+k,, d,=(—1)"mA4, and 7,=(n+1/2)p
H=-5 ;) (tje'if; fj+H-C-)+2 Vififi, (1) +k,. It can be easily checked that
1] I

where ¢;; is the magnetic phase factor. For clarification, we An+@=An, Bnio=Bn, (7)
will replace the labeli by (n,m) in the following, which . .
denotes the r{,m) plaquette as well as the lattice point at WhereQ=q (2q) for an evenlodd integerq. Thus, then in
the lower left corner of the plaquette. Without loss of gener-EQ: (4) satisfies the condition<n<Q. Besides, because of
ality, we take the uniform part of the magnetic flux through the magnetic translation symmetry, the primitive unit cell
plaguette as¢=2mp/q with relative prime integersp  CONSIsts ofq(Q) plaquettes without(with) checkerboard
and g. For the checkerboard modulation, we hase,/2= ~ Modulation.

= —Ay(—1)"™ and Vi=Ay(—1)""™ (see Fig. 1 The The Bloch condition along the direction can be written
Landau gauge is used such that the magnetic phase factdt$
become "

Cn,m( ky) =e™! Xn‘r/’n,m( kx vky) (8

0n+1,m;n,m:O,

for |k|=m/Q, where g m(K.Ky)=tnm(ky.ky) and
o, m(Kxt+ 27/ Q,Ky+ ) = thyy m(Ky ,Ky). Now we only need
to solve the problem within the first magnetic Brillouin zone
given by|k,=<7/Q and|k/|<m/2.

Thus we obtain the eigenvalue equatiod,W=EW,
whereW = (11,012,821, 22, - - - Wo1,%02) " and

On, m+1; n, m=n¢+(_1)n+m7TA¢, (2

1
.

0n+1,m+1;n,m: 0n,m+l;n+1,m: ( n+ E
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A, Bje % 0 . 0 0 Bge'kx
B,e'*x A, Bye k... 0 0 0
0 B,e'kx Ay - 0 0 0
M = : 9)
0 0 0 -+ Bg €% Ag.y  Bgoie ™
Boe ™ 0 0o - 0 Bo- 1€ Aq

We calculate the energy eigenvalues for all the valudsiof (V) E(¢,44,Av)=E(¢—¢o,Ay—1Ay). This is be-
the first magnetic Brillouin zondk,|</Q and|k,|<m/2, ~ cause of the freedom in shifting the fluxesia(, ¢s) — (¢a

by directly diagonalizing the @x 2Q Hamiltonian matrix ~ — 2%0,#s), Whereg,=¢+2mA, and pg=h—27A , are

- i - the fluxes through each plaquette of hendB sublattices,
M (k). As indicated in Fig. 1, the system has the CheCker'respectiver.

board translational symmetry. That is, the system is invariant By combining symmetried) and(ll), it is not difficult to

u_nder the lattice transl_atior_1 by two lattice constants a_longSee thatE(¢,A 4,Ay) should remain unchanged when the
either thex or they directions, or under the translation sign of any of its argumentsg, A4, or Ay, is changed.
(n,m)—(n+1m+1) along the dlagonal. Thus one expectsgrqm symmetriegli) and (Il), we haveE(¢o+ ¢,A 4,Ay)
that,. under the abpve transformations, f[he energy s.,pec'trUt_n E(d— 0.0y, Av)=E(o— b.A4,Ay). That is, the dis-
obtained by the eigenvalue problem with the Hamiltonianyipytion of E(¢) in the E— ¢ diagram has a mirror symme-
matrix M (k) should remain the same, which is not obvioustry with respect to the vertical linep= bo.
as seen from Eq(9). In Appendix A, we prove that the Finally, we show that, in th& — ¢ diagram, it is sufficient
Hamiltonian matrices before and after the translations aréo plot the spectra within the range<0p<<¢y/2 only. The
identical up to a shift irk, and thus give the same energy reason is as follows: frorfil), (lll), (IV), and the freedom to
spectra. flip the signs ofA , andA,, without changing the spectrum, it
We show that there are several general symmetries of thié clear that, for fixed values ok, and Ay, it suffices to
spectra in theE— ¢ diagram, which can be used to reduce know the spectrum within the interv@D,¢o). Moreover,
the amount of calculations. Similar discussion for the sysfrom (IV) and (1), we haveE(¢o/2+¢,A,,Ay) =RE(d
tems without field modulations can be found in Ref. 7. In the ™ $0/2,= A4, Av) =RE(¢o/l2— ¢,44,Ay). Therefore, the
following, the collection of energy subbands at a flaxper ~ SPectrum alon'g 'ghe whple flux coordinate can be determined
plaquett¢ modulated by 4,,Ay) is denoted by by the E(¢) within the interval[0,¢o/2).
E(#,A4,Ay). It has the following symmetries.

1) E(¢9,44,Ay)=E(—¢,—A,,Ay). This follows from lll. MAIN FEATURES OF THE SPECTRA
using two(three-dimensionalcoordinate systems which are _ _ _ . _
mirror images of each other with respect to M p|ane_ In the discussion belOW, all energies are In Unltstpf

The physics, and hence the energy spectra, should be tfesidest;(=1), there are three adjustable parameters in the
same in these two frames with opposite handednesses. ~ Present generallz.ed- Hofstadter model on a square lattice:
(1) E($.A 5 A) =E(—hA,,Ay) =E(—h,— Ay, —Ay). Ay, Ay, andt,. It is |meSS|bIe to show all the results from

The first equality follows from rotating the(three- the wholg three-dimensional .parameter spﬁic‘éherefqre,
dimensional coordinate frame by 180° around either the we selectively report on certain sets of parameters with rep-

axis or thev axis: the second is from shifting the coordinate resentative features. Notice that in Refs. 13—15, neither elec-
by one pla)(/quette, along either theaxis or thgy axis tric modulation nor NNN hoppings has been considered and

> . the parameter space is one dimensional only.
() E(¢’A<?’AV)_ E(¢+.2¢°'A¢’AV)' This .results First, we consider the effect of the checkerboard modula-
from the following two factsi(i) the smallest hopping loop

. tion on the systemwithout NNN couplingst,, which have
for electrons encloses half of a plaqueti€) the Aharonov- several symmetriein addition to the symmetries(l)—(V)

Bohm phase for this closed loop is unchanged after addingsieq apove.

one flux quantum to within this loop. (") E(¢,A4,Ay)=E(d+ bo,Ay,Ay). When there is
(IV) E(¢,A4,Av)=RE(d+ ¢o,—A4,Ay), where the  only NN hopping, the period of the spectrum is one flux

operator® flips the spectrum with respect to the horizontal quantum since the smallest loop of hopping now is one

E=0 line. This follows from the two transformations:) plaquette, instead of half of the plaquette.

fom— (—1)""™, n and p— ¢+ ¢g; (i) fy m— T meq1 and (IV') E(¢,A4,A)=RE($,A4,Ay). This results from

Ay——A,. It can be shown that the overall sign of the symmetriegIV) and (lll"), followed by flipping the sign of

Hamiltonian in Eq.(1) changes after this two transforma- A4, which would not change the spectrum. Thus,

tions, thus the spectra should have symméwy after shift-  E(¢,A,,Ay) is symmetric with respect to the horizontal

ing ¢ by one ¢, and reversing the direction df ;. =0 line whent, =0.
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FIG. 2. The Hofstadter spectrum with the following parameters: FIG. 4. The Hofstadter spectrum with the following parameters:
(A¢ ,AV ,t2) = (01,0,0) (A¢ YAV ,tz) = (01,01,05)

(V") E(¢,A4,Ay)=E(¢p—po/2A,—1/12Ay). The ar- However, a distinctiveg-independent energy gap with a
gument is similar to the one leading td), except that now magnitudeE,=2A,, appears in the middigalso see Fig.
¢ can be shifted by one, without altering the Aharonov-  6(a)]. This is truewith or withoutadding the modulatio .
Bohm phase of a closed-loop hopping. First, it is not difficult to understand why the spectrum splits

In Fig. 2, the spectrum for a checkerboard modulationto two groups in energy: they originate from the two Bloch
with (A4,Ay)=(0.1,0) is presented. The spectrum is indeedthands at¢=0 due to the checkerboard modulation of the
symmetric with respect to thE=0 line, according to sym- scalar potential. What is surprising is that the magnitude of
metry (IV"). Furthermore, because of the symmetry’V the gap remains a constant for differeis andA ,'s. It is no
and the freedom to flip the signs of the arguments, we haviynger a constant as long as NNN couplings are included
E(dold+ h,Ay4,Ay) =E(¢p— ¢po/4,1/12- A, ,Ay) =E(po/4 Fig. 4). A proof of the existence of the flux-independent gap
—¢,Ay,—12Ay). Therefore,after being reflectecby the s given in Appendix B, where it is shown that there exists a
vertical line at¢y/4, Fig. 2 withA ,=0.1 is identical to the very simple relation between the spectra with and without
Hofstadter spectrum faﬁ¢:0.4.27 electrostatic modulationAy. That is, E(¢,A4,Ay)=

In Fig. 3, a checkerboard modulation withA§,Ay)  =[E(¢,A,,0)2+A7]"2 It can be checked that the spectra
=(0.1,0.1) is considered. Without NNN hoppings, this Hof-in Fig. 2 and Fig. 3 do obey this relation in details.
stadter spectrum retains the same symmetries as in Fig. 2. The constancy of the energy gapthe limit of small flux

¢ can be understood in the following semiclassical pictre.
2 —_ T T L The energy bands with vanishing widths és-0 in Fig. 3
are the cyclotron energy levels of the two parent bands at
#=0, which have the energy dispersiong. (k)=
£ *[(coske+cosk,)*+AJ]? if A,=0. It can be shown that,
N\ near the two inner band edges with enerdites= + A, the
“\\‘§_ cyclotron effective masses approach infinity. Therefore, the
position of the lowest Landau level approaches the lowest
possible energy at the band edge and does not depend on the
uniform magnetic field.

When NNN couplings are included, the spectrum imme-
diately loses the mirror symmetry with respect to the hori-
zontal E=0 line.” If only two of the three parameters are
nonzero, then the spectrum remains fractal but distorted.
When all three parametera,, ,Ay, andt,, are nonzero, the
subbands become significantly wider in most, but not all, of
0.2 03 0.4 0.5 the regions. A typical example is shown in Fig. 4. The extent

Magnetic flux (p/q) of widening varies as the parameters are varied. Because of
the widening, the electrons are more delocalized, and be-

FIG. 3. The Hofstadter spectrum with the following parameters:come more mobile in transport.

(Ay,Ay,t2)=(0.1,0.1,0). There is a surprising exception to the asymmetry resulted
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FIG. 5. The Hofstadter spectrum with the following parameters:
(Ay,Ay,t2)=(0.5,0.3,0.7).

from NNN hoppings: the symmetry is restored again when
A,=0.5, even ifboth Ay, andt, are nonzero. For example,
the symmetric spectrum shown in Fig. 5 is fax (,Ay/,t,)
=(0.5,0.3,0.7). The existence of such a symmetry can be
proved as follows. From the symmetriddl ), (IV), and (V)
listed above, and the freedom to flip the signs of the argu-
ments, it can be shown thaE(¢,A,,Ay)=0RE(e,1
—A4,Ay), which is a far less apparent symmetry since it
relates two systems with different strengths of flux modula-
tion. It is clear that whem ,=0.5, the spectrum has to be
symmetric with respect to the line=0.
In Fig. 6, we demonstrate how the continuous variation of | | | [ | ] | | |
Ay andA 4 influence the spectrum. The uniform flux and the -2
NNN couplings are fixed at the values pfq=2/5 andt, O 02 04 06 08 1
=0. In principle, there should b®=2q=10 bands at this A
value of the flux. However, in Fig. (6) with (Ay,A,) )
=(x,0), wherexe[0,1] is the value of the coordinate, only
six bands are observed. In fact, each of the upper two and 2
lower two bands is itself formed by two overlapping sub- (C)
bands. We can also see that the band gap in the middle is
indeed proportional td,,, as mentioned earlier. In Fig(l9,
(Ay,A,)=(0x), wherexe[0,1] is again the value of the 1
coordinate. There is almost no similarity betweéanand (b). >
The overlapped subbands in Figapare split by a nonzero o)
A4 and become very thin in most of the regions. On the 8 O
c
a8

other hand, the band in the middle is thick and is actually
composed of two subbands. The increase of flux modulation

also induces many band crossings. In addition, there is an
apparent symmetrig(¢,A4,Ay) =E(4,1-A4,Ay). InFig. —1
6(c), bothA, andA , are nonzero and have the same numeri-

cal value. It has mixing features frofa) and (b), but the

magnitude of the energy gap in the middle is not altered 1 |

T at—1"1T"

]
[comparing with(a)] by the nonzera\ ,. Such a continuous - 0 02 04 06 08 1

tuning of the band structure might be realized in the future
using the optical lattices formed by quantum optical méans. A v (= A(b)
IV. SUMMARY

_ FIG. 6. The variation of band widths &) Ay, (b) A4, and(c)
The studies of Hofstadter spectrum have evolved fronbothA, andA 4 are tuned. The values @f/27=2/5 andt,=0 are
pure academic curiosities to accessible experimental investiixed.
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gations. It is a basic physics problem involving simple inter-tice  translation  Q,m)—(n+1m+1) such that
play between a lattice and a magnetic field. Because of itg, m(Ky,Ky) = ¥, 1m+1(Ky,K,), the new Hamiltonian ma-
general setting, it is not surprising to find counterpart probrix again becomes identical to the original one with a shift
lems in different physical systems, such as the quantum Hak,—k,+ ¢. Hence we conclude that the energy spectrum is
system, the type-ll superconductivity, and the two-indeed invariant under the checkerboard translation.
dimensional antiferromagnetism. Motivated by a study on
the frustrated antiferromagnetism, and the recent experimen-
tal advances, we study the Hofstadter problem with checker- AppPENDIX B: PROOF OF THE EXISTENCE OF THE
board modulations in detail. In this paper, the spectra are FLUX-INDEPENDENT ENERGY GAP
found to have several flux-related symmetries with respect to . . .
the change ofp andA,. One unanticipated symmetry oc-  For t,=0, our model is a nearest-neighbor-hopping
curs whem ,=1/2. At that value, the spectrum is symmetric model on a bipartite lattice. Therefore, we can rewrite the
with respect to th&=0 line even in the presence of NNN Hamiltonian in Eq.(1) as
hoppings. In the absence of NNN hoppings, we find a flux-
independent energy gap induced by electric modulations.
Furthermore, a simple connection between the spectra for H:({fT} {ff})(AVl D )<{fA}) B1)
bipartite systems with and without electric modulation is dis- APUBI DT — A\ {fg))”
covered. More detailed aspects of the spectra are not inves-
tigated in this paper, however, such as the change of the . : . B
fractal measures in th& ,— A\ —t, parameter space. Such a Wher_e : de_notes the |de_nt|ty matr|x,{fA}—{fn'm|_n
study would reveal different phases in this space, as wag M 1S ever} is a set .Of ferm_lon operator; for sublattige
done by Han and co-workers on the systems in a uniforn‘?‘nd{fB}:{ff‘.zmanrm IS Odq IS for sublatticeB. WhenAy
magnetic field The most general problem, when the super—zo' the Schrdinger equation is
lattices of modulation can have the symmetries of their own,
is considerably more involved. This study offers a starting 0 D\ [d ®

. . o . A A
point for researches in this direction. ( )( ) = ( ) (B2)

_EO

DT 0| dg by
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APPENDIX A: PROOF OF THE CHECKERBOARD-
TRANSLATION SYMMETRY OF THE SPECTRUM Dby
In this appendix, we show that the energy spectrum ob- (I)E( —Ay— /E§+ A\Z,(I)B) (B4)

tained from Eq(9) does respect the checkerboard-translation
symmetry.
First, because there is nom dependence of the matrix with the corresponding eigenvalu€s¢=i\/E02+ AVZ, be-
elements in Eq(9), the Hamiltonian matrix and therefore the cause
spectrum are unchanged under the lattice translatienm
+2 such thaty, n(Ky,Ky) = ¢ m+2(Kx,Ky). Second, from

Egs. (5 and(6), one can show that the matrix elements in Ayl D = e

the Hamiltonian matrix satisfy the relationd, »(k,) ( DT =AY P, == VEg+HAVD. (BS)
=An(ky+2¢) and B, 5(ky) =B,(k,+2¢). Therefore, un- . o

der the lattice translatiom—n+2 such thatiy, m(ky,ky) Therefore, the energy spectrum is symmetric with respect
— n+2m(Kx . Ky), the new Hamiltonian matrix for the eigen- to the horizontalE=0 line as mentioned in Sec. lll. The

value problem after transformation becomes identical to th@ositive-energy and the negative-energy parts are separated
original one with another value d,, i.e., ky—k,+2¢. Dby an energy gap I Eol2,,+A2, where|Eq|min is the mini-
Thus the whole energy spectrum within the first magnetiomum value of|Eo| at given¢ andA,. Since it has been
Brillouin zone remains the same. Third, the matrix elementshown that zero-energy modes exist in the absenag,dbr

in the Hamiltonian matrix can be shown to obey the follow- all flux values?® we have|E|,i,=0 for all values of¢ and

ing identities: oxAn s 1(Ky) oy =An(ky+ @) and A,. Consequently, the magnitude of the energy gap in the
0,Bny1(ky) ox=Bn(ky+ ¢), whereo, is the Pauli matrix. presence oAy should be A, independent of the values of

By using these identities, one can prove that, under the lat$ andA .
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