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Energy spectrum of Bloch electrons under checkerboard field modulations
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Two-dimensional Bloch electrons in a uniform magnetic field exhibit a complex energy spectrum. When
static electric and magnetic modulations with a checkerboard pattern are superimposed on the uniform mag-
netic field, more structures and symmetries of the spectra are found, due to the additional adjustable parameters
from the modulations. We give a comprehensive report on these symmetries. We have also found an electric-
modulation induced energy gap, whose magnitude is independent of the strength of either the uniform or the
modulated magnetic field. This study is applicable to experimentally accessible systems and is related to the
investigations on frustrated antiferromagnetism.
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I. INTRODUCTION

When the spectrum of a two-dimensional~2D! Bloch
electron in a uniform magnetic field is plotted in the energ
flux diagram, a self-similar structure with fractal proper
emerges.1 Such a complex structure, called the Hofstad
spectrum, arises due to the commensurability between
length scales in this system: the lattice constant and the
clotron radius. The Hofstadter spectrum is one of the earl
predictions of fractal structure in solid-state physics. Sub
quently, it was found that not only the energy spectrum
self-similarity, the wave function also exhibits scaling beha
ior and can be analyzed using the renormalization group2

Because of its beautiful structure, the Hofstadter spect
has attracted many researchers’ attention, and the spectr
different 2D lattice symmetries have been reported. Bes
the square lattice, there are also triangular lattice,3 honey-
comb lattice,4 Kagome lattice,5 and a bipartite periodic struc
ture with hexagonal symmetry.6 These are all studied within
the framework of Bloch electrons in a uniform magne
field, usually assuming nearest-neighbor~NN! couplingst1
only. Including and varying the next-nearest-neighb
~NNN! couplingst2 leads to band crossings accompanied
exchange of quantized Hall conductances between band7,8

For a square lattice, detailed scaling analysis reveals a bic
cal point att152t2, accompanied by interesting topologic
change of the spectrum.9 Spectra for systems with coupling
beyond next-nearest neighbors have also been studied.10 In
addition, the external magnetic field, rather than being u
form, can be periodically modulated with a pattern unrela
to the original lattice. The simplest situation when a ma
netic lattice overlaps with the electric lattice is realized wh
a ferromagnetic grid is deposited on a semiconductor.11 The
interfacial stress between two materials would naturally
duce an electric grid with the same period and symmetry
the ferromagnetic grid. More generally, there can also b
magnetic modulation with the pattern of a 1D strip,12 or a 2D
checkerboard13–15 superimposes on the electric square l
tice. The checkerboard configuration has been realized
0163-1829/2004/69~11!/115108~7!/$22.50 69 1151
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perimentally using a superconducting Nb network with pe
odic magnetic Dy islands.15 The calculations of the
Hofstadter spectra provide the basis to study such artifi
networks.

A direct observation of the Hofstadter spectrum has b
realized using microwaves16 or acoustic waves17 transmitting
through an array ofmacroscopicscatters. However, a fracta
electronicspectrum is significantly more difficult to be rea
ized in an usual solid, whose lattice constant is only a f
angstroms, and a magnetic field of the order of 104 T is
required. For 10 T or less, we can only probe the part of
Hofstadter spectrum that reduces to the familiar Landau
els with roughly equal spacings in energy. In the last deca
different superlattice structures with much larger lattice co
stants are used to cope with this high-field problem.18 Be-
sides, several physical systems are closely related to the
stadter problems and offer alternative angles of investigat
for example, the studies of a superconductor in a vor
state,19 a superconducting network in a magnetic field,15 and
a junction of three quantum wires.20 Furthermore, recent ad
vance on optical lattices makes it possible to implemen
lattice Hamiltonian resembling the effects of magnetic fie
with neutral atoms.21 This offers great opportunities sinc
not only the magnetic field, but also the lattice symmetry,
potential strength, and the relative importance of many-bo
effects can be adjusted in such a system.

This paper is motivated by a study very different fro
those mentioned above. In a recent paper,22 Misguich and
co-workers, by using the hard-core bosons to represent
spin degrees of freedom, and using the Chern-Simons tr
formation to transmute bosons to fermions, mapped a
frustrated antiferromagnetic problem to a Hofstadter pr
lem. This approach is subsequently used to study the ma
tization properties of theJ12J2 Heisenberg model on a
square lattice.23 After suitable mathematical mappings and
mean-field approximation, the magnetization problem can
reduced to a Hofstadter problem withbothelectric and mag-
netic superstructures superimposed on the original latt
This motivates us to consider the checkerboard superst
©2004 The American Physical Society08-1
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MING-CHE CHANG AND MIN-FONG YANG PHYSICAL REVIEW B 69, 115108 ~2004!
ture, which is related to the Ne´el phase in the magnetizatio
problem, with congruous electricandmagnetic modulations
Couplings up to next-nearest neighbors are conside
which are essential to cause magnetic frustration in theJ1
2J2 Heisenberg model.24

In this paper, we make a comprehensive survey of
symmetries of the Hofstadter spectra with field modulatio
Some of the symmetries already exist without modulatio
such as the ones related to reversing the direction of
magnetic flux, and shifting the flux in a plaquette by two fl
quanta@see items~II ! and~III ! in Sec. II#. Some of the other
symmetries that are closely related to field modulations
also reported. In particular, when the system is subjec
staggeredp fluxes, its spectrum in theE2f diagram has an
up-down symmetry even with NNN couplings~see Fig. 5!,
which is quite unexpected since NNN couplings usually
stroy such a symmetry.7 Besides the studies on symmetrie
for systems with only NN couplings, we find a simple alg
braic connection between the spectra with and without
electric checkerboard field. We also find a flux-independe
energy gap induced by the electric modulation~see Fig. 3!,
which can be explained by using the algebraic relation
mentioned.

This paper is organized as follows. Theoretical formu
tion on the system with checkerboard super-structure, as
as the discussion of the symmetries of the energy spe
can be found in Sec. II. Major features of the Hofstad
spectra are discussed in Sec. III. We summarize and conc
our results in Sec. IV. The proofs on checkerboa
translation symmetry of the spectrum and on the existenc
the flux-independent energy gap are given in the appendi

II. THEORETICAL ANALYSIS

The tight-binding Hamiltonian describing the motion
an electron in a magnetic field is given by

H52
1

2 (
^ i , j &

~ t i j e
iu i j f i

†f j1H.c.!1(
i

Vi f i
†f i , ~1!

whereu i j is the magnetic phase factor. For clarification, w
will replace the labeli by (n,m) in the following, which
denotes the (n,m) plaquette as well as the lattice point
the lower left corner of the plaquette. Without loss of gen
ality, we take the uniform part of the magnetic flux throu
plaquette asf52pp/q with relative prime integersp
and q. For the checkerboard modulation, we havedf i /2p
52Df(21)n1m and Vi[DV(21)n1m ~see Fig. 1!. The
Landau gauge is used such that the magnetic phase fa
become

un11,m;n,m50,

un, m11; n, m5nf1~21!n1mpDf , ~2!

un11,m11;n,m5un,m11;n11,m5S n1
1

2Df.
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Due to the modulation in they direction and under the
gauge choice in Eq.~2!, the tight-binding Hamiltonian in Eq
~1! now becomes invariant under they translationm→m
12. Thus the Bloch theorem gives

f n,m5e2 ikymcn,m~ky! ~3!

for ukyu<p/2, where cn,m12(ky)5cn,m(ky) and cn,m(ky
1p)5cn,m(ky). Therefore, the generalized Harper equati
becomes

AncWn~ky!1BncWn11~ky!1Bn21cWn21~ky!5EcWn~ky!, ~4!

wherecWn(ky)5@cn,1(ky),cn,2(ky)#T and

An5S 2~21!nDV 2t1cos~xn!eidn

2t1cos~xn!e2 idn ~21!nDV
D , ~5!

Bn5S 2t1/2 2t2cos~hn!

2t2cos~hn! 2t1/2 D ~6!

with xn5nf1ky , dn5(21)npDf , and hn5(n11/2)f
1ky . It can be easily checked that

An1Q5An , Bn1Q5Bn , ~7!

whereQ5q (2q) for an even~odd! integerq. Thus, then in
Eq. ~4! satisfies the condition 1<n<Q. Besides, because o
the magnetic translation symmetry, the primitive unit c
consists ofq(Q) plaquettes without~with! checkerboard
modulation.

The Bloch condition along thex direction can be written
as

cn,m~ky!5e2 ikxncn,m~kx ,ky! ~8!

for ukxu<p/Q, where cn1Q,m(kx ,ky)5cn,m(kx ,ky) and
cn,m(kx12p/Q,ky1p)5cn,m(kx ,ky). Now we only need
to solve the problem within the first magnetic Brillouin zon
given by ukxu<p/Q and ukyu<p/2.

Thus we obtain the eigenvalue equation,MC5EC,
whereC5(c1,1,c1,2,c2,1,c2,2, . . . ,cQ,1 ,cQ,2)

T and

FIG. 1. A square lattice with checkboard field modulation. T
magnetic flux through the left~right! plaquette isf12pDf (f
22pDf). The scalar potentials at the lattice points indicated
solid and empty dots areDV and2DV , respectively.
8-2



M5S A1 B1e2 ikx 0 ••• 0 0 BQeikx

B1eikx A2 B2e2 ikx
••• 0 0 0

0 B2eikx A3 ••• 0 0 0

••• ••• ••• ••• ••• ••• •••

0 0 0 ••• B eikx A B e2 ikx
D . ~9!
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We calculate the energy eigenvalues for all the values ofkW in
the first magnetic Brillouin zone,ukxu<p/Q and ukyu<p/2,
by directly diagonalizing the 2Q32Q Hamiltonian matrix

M (kW ). As indicated in Fig. 1, the system has the check
board translational symmetry. That is, the system is invar
under the lattice translation by two lattice constants alo
either the x or the y directions, or under the translatio
(n,m)→(n11,m11) along the diagonal. Thus one expec
that, under the above transformations, the energy spec
obtained by the eigenvalue problem with the Hamilton

matrix M (kW ) should remain the same, which is not obvio
as seen from Eq.~9!. In Appendix A, we prove that the
Hamiltonian matrices before and after the translations
identical up to a shift inky and thus give the same energ
spectra.

We show that there are several general symmetries of
spectra in theE2f diagram, which can be used to redu
the amount of calculations. Similar discussion for the s
tems without field modulations can be found in Ref. 7. In t
following, the collection of energy subbands at a fluxf ~per
plaquette! modulated by (Df ,DV) is denoted by
E(f,Df ,DV). It has the following symmetries.25

~I! E(f,Df ,DV)5E(2f,2Df ,DV). This follows from
using two~three-dimensional! coordinate systems which ar
mirror images of each other with respect to thex-y plane.
The physics, and hence the energy spectra, should be
same in these two frames with opposite handednesses.

~II ! E(f,Df ,DV)5E(2f,Df ,DV)5E(2f,2Df ,2DV).
The first equality follows from rotating the~three-
dimensional! coordinate frame by 180° around either thex
axis or they axis; the second is from shifting the coordina
by one plaquette along either thex axis or they axis.

~III ! E(f,Df ,DV)5E(f12f0 ,Df ,DV). This results
from the following two facts:~i! the smallest hopping loop
for electrons encloses half of a plaquette;~ii ! the Aharonov-
Bohm phase for this closed loop is unchanged after add
one flux quantum to within this loop.

~IV ! E(f,Df ,DV)5RE(f1f0 ,2Df ,DV), where the
operatorR flips the spectrum with respect to the horizon
E50 line. This follows from the two transformations:~i!
f n,m→(21)n1mf n,m andf→f1f0; ~ii ! f n,m→ f n,m11 and
Df→2Df . It can be shown that the overall sign of th
Hamiltonian in Eq.~1! changes after this two transforma
tions, thus the spectra should have symmetry~IV ! after shift-
ing f by onef0 and reversing the direction ofDf .
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~V! E(f,Df ,DV)5E(f2f0 ,Df21,DV). This is be-
cause of the freedom in shifting the fluxes, (fA ,fB)→(fA
22f0 ,fB), wherefA5f12pDf andfB5f22pDf are
the fluxes through each plaquette of theA andB sublattices,
respectively.

By combining symmetries~I! and~II !, it is not difficult to
see thatE(f,Df ,DV) should remain unchanged when th
sign of any of its arguments,f, Df , or DV , is changed.
From symmetries~III ! and ~II !, we haveE(f01f,Df ,DV)
5E(f2f0 ,Df ,DV)5E(f02f,Df ,DV). That is, the dis-
tribution of E(f) in theE2f diagram has a mirror symme
try with respect to the vertical linef5f0.

Finally, we show that, in theE2f diagram, it is sufficient
to plot the spectra within the range 0<f,f0/2 only. The
reason is as follows: from~II !, ~III !, ~IV !, and the freedom to
flip the signs ofDf andDV without changing the spectrum,
is clear that, for fixed values ofDf and DV , it suffices to
know the spectrum within the interval@0,f0). Moreover,
from ~IV ! and ~I!, we haveE(f0/21f,Df ,DV)5RE(f
2f0/2,2Df ,DV)5RE(f0/22f,Df ,DV). Therefore, the
spectrum along the whole flux coordinate can be determi
by theE(f) within the interval@0,f0/2).

III. MAIN FEATURES OF THE SPECTRA

In the discussion below, all energies are in units oft1.
Besidest1~51!, there are three adjustable parameters in
present generalized Hofstadter model on a square lat
Df , DV , andt2. It is impossible to show all the results from
the whole three-dimensional parameter space.26 Therefore,
we selectively report on certain sets of parameters with r
resentative features. Notice that in Refs. 13–15, neither e
tric modulation nor NNN hoppings has been considered
the parameter space is one dimensional only.

First, we consider the effect of the checkerboard modu
tion on the systemswithout NNN couplingst2, which have
several symmetriesin addition to the symmetries~I!–~V!
listed above.

(III 8) E(f,Df ,DV)5E(f1f0 ,Df ,DV). When there is
only NN hopping, the period of the spectrum is one fl
quantum since the smallest loop of hopping now is o
plaquette, instead of half of the plaquette.

(IV 8) E(f,Df ,DV)5RE(f,Df ,DV). This results from
symmetries~IV ! and (III8), followed by flipping the sign of
Df , which would not change the spectrum. Thu
E(f,Df ,DV) is symmetric with respect to the horizontalE
50 line whent2 50.
8-3
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MING-CHE CHANG AND MIN-FONG YANG PHYSICAL REVIEW B 69, 115108 ~2004!
(V8) E(f,Df ,DV)5E(f2f0/2,Df21/2,DV). The ar-
gument is similar to the one leading to~V!, except that now
fA can be shifted by onef0 without altering the Aharonov-
Bohm phase of a closed-loop hopping.

In Fig. 2, the spectrum for a checkerboard modulat
with (Df ,DV)5(0.1,0) is presented. The spectrum is inde
symmetric with respect to theE50 line, according to sym-
metry (IV8). Furthermore, because of the symmetry (V8)
and the freedom to flip the signs of the arguments, we h
E(f0/41f,Df ,DV)5E(f2f0/4,1/22Df ,DV)5E(f0/4
2f,Df21/2,DV). Therefore,after being reflectedby the
vertical line atf0/4, Fig. 2 withDf50.1 is identical to the
Hofstadter spectrum forDf50.4.27

In Fig. 3, a checkerboard modulation with (Df ,DV)
5(0.1,0.1) is considered. Without NNN hoppings, this Ho
stadter spectrum retains the same symmetries as in Fi

FIG. 2. The Hofstadter spectrum with the following paramete
(Df ,DV ,t2)5(0.1,0,0).

FIG. 3. The Hofstadter spectrum with the following paramete
(Df ,DV ,t2)5(0.1,0.1,0).
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However, a distinctivef-independent energy gap with
magnitudeEg52DV appears in the middle@also see Fig.
6~a!#. This is truewith or withoutadding the modulationDf .
First, it is not difficult to understand why the spectrum spl
to two groups in energy: they originate from the two Blo
bands atf50 due to the checkerboard modulation of t
scalar potential. What is surprising is that the magnitude
the gap remains a constant for differentf ’s andDf’s. It is no
longer a constant as long as NNN couplings are included~see
Fig. 4!. A proof of the existence of the flux-independent g
is given in Appendix B, where it is shown that there exists
very simple relation between the spectra with and with
electrostatic modulationDV . That is, E(f,Df ,DV)5
6@E(f,Df,0)21DV

2 #1/2. It can be checked that the spect
in Fig. 2 and Fig. 3 do obey this relation in details.

The constancy of the energy gapin the limit of small flux
f can be understood in the following semiclassical picture28

The energy bands with vanishing widths asf→0 in Fig. 3
are the cyclotron energy levels of the two parent bands
f50, which have the energy dispersionsE6(kW )5
6@(coskx1cosky)

21DV
2#1/2 if Df50. It can be shown that

near the two inner band edges with energiesE656DV , the
cyclotron effective masses approach infinity. Therefore,
position of the lowest Landau level approaches the low
possible energy at the band edge and does not depend o
uniform magnetic field.

When NNN couplings are included, the spectrum imm
diately loses the mirror symmetry with respect to the ho
zontal E50 line.7 If only two of the three parameters ar
nonzero, then the spectrum remains fractal but distor
When all three parameters,Df ,DV , andt2, are nonzero, the
subbands become significantly wider in most, but not all,
the regions. A typical example is shown in Fig. 4. The exte
of widening varies as the parameters are varied. Becaus
the widening, the electrons are more delocalized, and
come more mobile in transport.

There is a surprising exception to the asymmetry resu

:

:

FIG. 4. The Hofstadter spectrum with the following paramete
(Df ,DV ,t2)5(0.1,0.1,0.5).
8-4
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ENERGY SPECTRUM OF BLOCH ELECTRONS UNDER . . . PHYSICAL REVIEW B69, 115108 ~2004!
from NNN hoppings: the symmetry is restored again wh
Df50.5, even ifboth DV and t2 are nonzero. For example
the symmetric spectrum shown in Fig. 5 is for (Df ,DV ,t2)
5(0.5,0.3,0.7). The existence of such a symmetry can
proved as follows. From the symmetries~III !, ~IV !, and~V!
listed above, and the freedom to flip the signs of the ar
ments, it can be shown thatE(f,Df ,DV)5RE(f,1
2Df ,DV), which is a far less apparent symmetry since
relates two systems with different strengths of flux modu
tion. It is clear that whenDf50.5, the spectrum has to b
symmetric with respect to the lineE50.

In Fig. 6, we demonstrate how the continuous variation
DV andDf influence the spectrum. The uniform flux and t
NNN couplings are fixed at the values ofp/q52/5 andt2
50. In principle, there should beQ52q510 bands at this
value of the flux. However, in Fig. 6~a! with (DV ,Df)
5(x,0), wherexP@0,1# is the value of thex coordinate, only
six bands are observed. In fact, each of the upper two
lower two bands is itself formed by two overlapping su
bands. We can also see that the band gap in the midd
indeed proportional toDV , as mentioned earlier. In Fig. 6~b!,
(DV ,Df)5(0,x), wherexP@0,1# is again the value of thex
coordinate. There is almost no similarity between~a! and~b!.
The overlapped subbands in Fig. 6~a! are split by a nonzero
Df and become very thin in most of the regions. On t
other hand, the band in the middle is thick and is actua
composed of two subbands. The increase of flux modula
also induces many band crossings. In addition, there is
apparent symmetryE(f,Df ,DV)5E(f,12Df ,DV). In Fig.
6~c!, bothDV andDf are nonzero and have the same nume
cal value. It has mixing features from~a! and ~b!, but the
magnitude of the energy gap in the middle is not alte
@comparing with~a!# by the nonzeroDf . Such a continuous
tuning of the band structure might be realized in the fut
using the optical lattices formed by quantum optical mean21

IV. SUMMARY

The studies of Hofstadter spectrum have evolved fr
pure academic curiosities to accessible experimental inv

FIG. 5. The Hofstadter spectrum with the following paramete
(Df ,DV ,t2)5(0.5,0.3,0.7).
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FIG. 6. The variation of band widths as~a! DV , ~b! Df , and~c!
bothDV andDf are tuned. The values off/2p52/5 andt250 are
fixed.
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MING-CHE CHANG AND MIN-FONG YANG PHYSICAL REVIEW B 69, 115108 ~2004!
gations. It is a basic physics problem involving simple int
play between a lattice and a magnetic field. Because o
general setting, it is not surprising to find counterpart pro
lems in different physical systems, such as the quantum
system, the type-II superconductivity, and the tw
dimensional antiferromagnetism. Motivated by a study
the frustrated antiferromagnetism, and the recent experim
tal advances, we study the Hofstadter problem with chec
board modulations in detail. In this paper, the spectra
found to have several flux-related symmetries with respec
the change off and Df . One unanticipated symmetry oc
curs whenDf51/2. At that value, the spectrum is symmetr
with respect to theE50 line even in the presence of NNN
hoppings. In the absence of NNN hoppings, we find a fl
independent energy gap induced by electric modulatio
Furthermore, a simple connection between the spectra
bipartite systems with and without electric modulation is d
covered. More detailed aspects of the spectra are not in
tigated in this paper, however, such as the change of
fractal measures in theDf2DV2t2 parameter space. Such
study would reveal different phases in this space, as
done by Han and co-workers on the systems in a unifo
magnetic field.9 The most general problem, when the sup
lattices of modulation can have the symmetries of their ow
is considerably more involved. This study offers a start
point for researches in this direction.

ACKNOWLEDGMENTS

M.C.C. and M.F.Y. acknowledge the financial supp
from the National Science Council of Taiwan under Contr
Nos. NSC 91-2112-M-003-019 and NSC 91-2112-M-02
007, respectively.

APPENDIX A: PROOF OF THE CHECKERBOARD-
TRANSLATION SYMMETRY OF THE SPECTRUM

In this appendix, we show that the energy spectrum
tained from Eq.~9! does respect the checkerboard-translat
symmetry.

First, because there is nom dependence of the matri
elements in Eq.~9!, the Hamiltonian matrix and therefore th
spectrum are unchanged under the lattice translationm→m
12 such thatcn,m(kx ,ky)→cn,m12(kx ,ky). Second, from
Eqs. ~5! and ~6!, one can show that the matrix elements
the Hamiltonian matrix satisfy the relationsAn12(ky)
5An(ky12f) and Bn12(ky)5Bn(ky12f). Therefore, un-
der the lattice translationn→n12 such thatcn,m(kx ,ky)
→cn12,m(kx ,ky), the new Hamiltonian matrix for the eigen
value problem after transformation becomes identical to
original one with another value ofky , i.e., ky→ky12f.
Thus the whole energy spectrum within the first magne
Brillouin zone remains the same. Third, the matrix eleme
in the Hamiltonian matrix can be shown to obey the follo
ing identities: sxAn11(ky)sx5An(ky1f) and
sxBn11(ky)sx5Bn(ky1f), wheresx is the Pauli matrix.
By using these identities, one can prove that, under the
11510
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tice translation (n,m)→(n11,m11) such that
cn,m(kx ,ky)→cn11,m11(kx ,ky), the new Hamiltonian ma-
trix again becomes identical to the original one with a sh
ky→ky1f. Hence we conclude that the energy spectrum
indeed invariant under the checkerboard translation.

APPENDIX B: PROOF OF THE EXISTENCE OF THE
FLUX-INDEPENDENT ENERGY GAP

For t250, our model is a nearest-neighbor-hoppi
model on a bipartite lattice. Therefore, we can rewrite
Hamiltonian in Eq.~1! as

H5~$ f A
†%,$ f B

†%!S DVI D
D † 2DVI D S $ f A%

$ f B%
D , ~B1!

where I denotes the identity matrix,$ f A%5$ f n,mun
1m is even% is a set of fermion operators for sublatticeA
and $ f B%5$ f n,mun1m is odd% is for sublatticeB. WhenDV
50, the Schro¨dinger equation is

S 0 D
D † 0 D S FA

FB
D 5E0S FA

FB
D , ~B2!

whereE0 is the eigenvalue for the system withDV50, and
(FA ,FB)T is the corresponding eigenvector. From them
can construct the eigenstates for the original problem:

F1[S DV1AE0
21DV

2FA

D †FA
D , ~B3!

F2[S DFB

2DV2AE0
21DV

2FB
D ~B4!

with the corresponding eigenvaluesE656AE0
21DV

2, be-
cause

S DVI D
D † 2DVI DF656AE0

21DV
2F6 . ~B5!

Therefore, the energy spectrum is symmetric with resp
to the horizontalE50 line as mentioned in Sec. III. Th
positive-energy and the negative-energy parts are sepa
by an energy gap 2AuE0umin

2 1DV
2, whereuE0umin is the mini-

mum value ofuE0u at givenf and Df . Since it has been
shown that zero-energy modes exist in the absence ofDV for
all flux values,29 we haveuE0umin50 for all values off and
Df . Consequently, the magnitude of the energy gap in
presence ofDV should be 2DV , independent of the values o
f andDf .
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