
This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/0953-8984/20/19/193202)

 is available

Download details:

IP Address: 140.122.141.175

The article was downloaded on 24/04/2008 at 10:54

Please note that terms and conditions apply.

More related content

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/0953-8984/20/19/193202/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 193202 (17pp) doi:10.1088/0953-8984/20/19/193202

TOPICAL REVIEW

Berry curvature, orbital moment, and
effective quantum theory of electrons in
electromagnetic fields
Ming-Che Chang1 and Qian Niu2

1 Department of Physics, National Taiwan Normal University, Taipei, Taiwan
2 Department of Physics, University of Texas at Austin, Austin, TX, USA

E-mail: changmc@phy.ntnu.edu.tw and niu@physics.utexas.edu

Received 9 January 2008, in final form 20 March 2008
Published 11 April 2008
Online at stacks.iop.org/JPhysCM/20/193202

Abstract
Berry curvature and orbital moment of the Bloch state are two basic ingredients, in addition to
the band energy, that must be included in the formulation of semiclassical dynamics of electrons
in crystals, in order to give proper account of thermodynamic and transport properties to first
order in the electromagnetic field. These quantities are gauge invariant and have direct physical
significance as demonstrated by numerous applications in recent years. Generalization to the
case of degenerate bands has also been achieved recently, with important applications in
spin-dependent transport. The reader is assured that a knowledge of these ingredients of the
semiclassical dynamics is also sufficient for the construction of an effective quantum theory,
valid to the same order of the field, using a new quantization procedure that generalizes the
venerable Peierls substitution rule. We cite the relativistic Dirac electron and the carrier in
semiconductors as two prime examples to demonstrate our theory and compare with previous
work on such systems. We also establish general relations between different levels of effective
theories in a hierarchy.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Berry’s phase is a unifying concept in physics [1, 2] and
the semiclassical dynamics with Berry curvature included
has found wide applications in solid state physics. The
Berry curvature appeared quite early in history in the one-
band effective dynamics of a Bloch electron [3, 4]. It
generates an anomalous velocity that is transverse to the
applied electric field. When applied to the quantum Hall
system, the semiclassical theory can explain the Hall current
and the quantization of the Hall conductivity [5–7]. In recent
years, it has helped in solving the mystery of the anomalous
Hall effect in ferromagnetic materials [8–10]. It is also a
primary notion motivating the proposal of the intrinsic spin
Hall effect [11, 12] and the optical Hall effect [13, 14].

Despite various attempts, the effective dynamics remains
largely semiclassical, and a systematic quantum version is still
lacking. Such a quantum theory would be needed if one wants
to know, for example, the full intricate structure of a band under
a magnetic field (the Hofstadter spectrum) [15]. Here we report
our recent finding of a quantization procedure by generalizing
the Peierls substitution rule [16].

For an effective quantum theory without the Berry phase,
it is a common practice to use the Peierls substitution [17, 18].
This is clearly inadequate when the band has a Berry
curvature. When this fails, one typically blames the neglect
of interband couplings, and expands the range of the Hilbert
space by including more bands. One message that we would
like to convey is that there is sufficient information in the
semiclassical formalism for constructing the correct quantum
theory. The Berry curvature and orbital moment in the one-
band semiclassical formulation contain all the information of
interband coupling that is needed for an effective quantum
theory for the band (or a subset of bands) under consideration.
This finding may have an enormous impact on research
based on first-principle band structure calculations. One is
now assured that, by calculating the three essential physical
quantities, the Bloch energy E(q), the Berry curvature F(q),
and the self-rotating angular momentum of the wavepacket
L(q), all electronic properties to first order in external fields
can be obtained.

On the other hand, in the 1950s and 1960s, systematic
studies were taken to develop effective Hamiltonians for a
Bloch electron in an electromagnetic field [19–21]. They are
exact up to a certain order in the external fields. It is not
immediately obvious how the Berry curvature emerges from
such an effective quantum theory. The effective Hamiltonian
involves quantities that are gauge dependent (depending on the
phase choice of the basis Bloch functions), and the position
operator conjugate to the momentum is not really the physical
position operator. However, miraculously, when one considers
the Ehrenfest equations of motion for the physical position and
crystal momentum, one obtains the semiclassical theory with
the gauge-invariant Berry curvature and the orbital moment
properly included.

In this review, we start with the gauge-invariant
semiclassical theory and quantize it using the generalized
Peierls substitution [16]. Naturally, our effective Hamiltonians

are in agreement with earlier results obtained by canonical
transformation [22, 23]. Although this route toward an
effective quantum theory is less direct compared with earlier
works, our approach is physically more transparent. The
wavepacket point of view is certainly intuitive, and the
gauge-invariant Berry curvature and orbital moment in the
semiclassical theory are of direct physical significance.
Furthermore, our method of quantization can also be applied
to more general situations, such as the crystal deformation
described in [24].

We do not attempt to give a comprehensive review on the
topics related to the Berry phase or semiclassical dynamics in
solids. They can be found in the following reviews in [25–28].
Instead, we focus on the semiclassical transport in solid
that involves spin (or quasi-spin) degrees of freedom. The
development is mainly based on the multi-band generalization
of the semiclassical dynamics [29], which will be reviewed in
section 2. This formalism applies to carriers with spins and has
a richer dynamics than the one-band theory.

Throughout this review, we will use the Dirac theory of
relativistic electron to illustrate the formalism. Dirac theory is
one of the simplest that admits a non-Abelian gauge structure.
In section 3, the three basic quantities mentioned above are
calculated exactly for the Dirac electron. They are used
to obtain the equations of motion and the equation for spin
precession.

Section 4 is devoted to the quantization of the
semiclassical theory. The Landau levels in a semiconductor
are not usually obtained by solving the Schrödinger equation
treating the lattice potential and the vector potential on an equal
footing. Such an approach is difficult and one ends up with a
complex Hofstadter spectrum [15]. Instead, one first solves
the band energy, then uses the Peierls substitution to obtain
the effective quantum Hamiltonian. The Landau levels are
the eigenenergies of this effective Hamiltonian [17, 18]. In
section 4, we derive the generalized Peierls substitution and the
effective Hamiltonians for systems with Berry curvature [16].
The Dirac theory is again used as an example.

Compared to the original quantum theory, the re-quantized
version is an effective one applying to a smaller Hilbert space
(of only one energy band, for example). The re-quantized
theory can have its own semiclassical approximation. One
can in turn re-quantize this semiclassical theory, and such a
process can go on and on until the resulting theory is trivial.
This way, one can generate a whole series of hierarchy theories
with different levels of approximation. In the extreme case,
in a system with self-similarity in energy scales, such as the
Hofstadter spectrum, such a series is essentially infinite. The
general relations between the theories with different levels of
approximation will be explored in section 5.

In section 6, equipped with the tools developed and
confirmed in preceding sections, we turn our attention to the
carrier dynamics in semiconductors within the framework of
the eight-band Kane model. This investigation offers fresh
perspectives on familiar concept in semiconductors, such as
the origin of the anomalous g-factor and the relation between
Berry connection and spin–orbit interaction. The review is
summarized and concluded in section 7.
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2. Semiclassical theory

In this section, we introduce the basic physical quantities
essential to the semiclassical theory. These include the Bloch
energy, the Berry curvature, and the orbital moment. We will
then briefly summarize the multi-band wavepacket formulation
of Culcer et al [29, 30]. Such a formulation serves as
a basic tool in this review. This summary is intended to
be self-contained. However, readers not familiar with the
wavepacket formulation are advised to consult earlier literature
on the simpler one-band theory first [7, 24]. In the one-
band version, the wavefunction has only one component and
the gauge structure is Abelian; in the multi-band version,
the wavefunction is a multi-component spinor and the gauge
structure becomes non-Abelian.

2.1. Bloch band and Berry curvature

Consider an electron in a periodic crystal with the following
Schrödinger equation:

H0(r,p)ψnq = E0,n(q)ψnq, (1)

where n and q are band index and crystal momentum, and
E0,n(q) and ψnq are the Bloch energies and Bloch states. The
Bloch states can always be written in the form

ψnq(r) = eiq·runq(r), (2)

where unq(r) is a cell-periodic function. It is useful to define
H̃ = e−iq·r H eiq·r and write the Schrödinger equation in an
alternative form,

H̃0(r,p; q)unq = E0,n(q)unq. (3)

In the semiclassical formulation, one considers a wavepacket
moving within a subset {E0,n(q), n = 1 · · · D} of the full
spectrum. Such a subset is degenerate in energy and is gapped
from the rest of the energy bands. Within such a subspace,
one can define two geometric quantities: a metric that defines
the quantum distance between two states [31], which is not a
concern of this review, and a connection defined as

Rmn(q) = i

〈
umq

∣∣∣∣∂unq

∂q

〉
. (4)

This is the non-Abelian Berry connection, which is a vector-
valued D × D matrix [32].

Following the rule of parallel transport, a state circling
a closed loop C in the Brillouin zone may acquire a unitary
(Berry) rotation. The Berry rotation for an infinitesimal loop
surrounding a point q is proportional to the curvature F at this
point,

F(q) = ∇q × R − iR × R. (5)

Throughout this review, symbols in calligraphic fonts represent
matrices (boldfaced calligraphic fonts are vector-valued
matrices). The Berry curvature matrix is gauge covariant under
a gauge rotation.

If the subset comprises only of one band with D = 1, then
R and F become vectors R and F, and the Berry rotation is

simply a U(1) Berry phase, which is invariant under a gauge
transformation. One can prove that, if the system has time-
reversal symmetry, then F(−q) = −F(q). Also, if there is
space-inversion symmetry, then F(−q) = F(q). Therefore,
when both symmetries exist, there can be no Berry curvature.
However, in a multi-band theory, the Berry curvature can exist
even if both symmetries exist.

2.2. Self-rotating angular momentum of a wavepacket

One can construct a wavepacket by linear superposition of the
Bloch states. In order for the wavepacket to remain intact
with a meaningful center of mass, we require it to reside on
a set of bands closely packed in energy so that it will not split
into separate packets. Before turning on an external field, the
unperturbed Hamiltonian H0(r,p) is assumed to be solvable
with degenerate Bloch states |ψn,q〉, n = 1 · · · D. If necessary,
a small degeneracy-breaking interaction can also be included.
But it has to be treated as a perturbation3.

The wavepacket is expanded as

|W 〉 =
D∑

n=1

∫
d3 qa(q, t)ηn(q, t)|ψn,q〉, (6)

where ηn(q, t) is normalized as a unit vector at each q, a(q, t)
is a narrow distribution that centers at qc(t) in momentum
space and is normalized as

∫
d3 q|a|2 = 1. The wavepacket

is also centered at rc in the real space. Therefore, one requires
〈W |r|W 〉 = rc. Obviously, one also has 〈W |H0|W 〉 = E0(qc).

The wavepacket is often found to be spinning with respect
to its own center of mass. The self-rotating angular momentum
of a wavepacket is L = 〈W |(r − rc) × p|W 〉. It is difficult to
calculate L under the present form since the exact shape of
the wavepacket is not specified. Fortunately, for a wavepacket
narrowly distributed around qc, it is possible to rewrite it in
another form using the Bloch states only [7],

L(qc) = i
m

h̄

〈
∂u

∂qc

∣∣∣× [
H̃0 − E0(qc)

]∣∣∣ ∂u

∂qc

〉
, (7)

where the cell-periodic function without a subscript is defined
as |u〉 = ∑D

n=1 ηn|un〉. In the discussions below, we will also
encounter an angular momentum matrix with the following
matrix elements:

Lnl(qc) = i
m

h̄

〈
∂un

∂qc

∣∣∣∣ ×
[

H̃0 − E0(qc)

]∣∣∣∣ ∂ul

∂qc

〉
. (8)

Obviously, after spinor average, one obtains the angular
momentum in equation (7): L = η†Lη = ∑

nl η
∗
nLnlηl .

2.3. Wavepacket energy in electromagnetic fields

An external electromagnetic field can be added to H0 using a
scalar potential φ(r) and a vector potential A(r), giving the
full Hamiltonian H . The wavepacket energy E(rc,qc) =
〈W |H |W 〉 differs from E0(qc) as a result of these external
fields. Such an energy shift can be calculated using a gradient

3 Such an addition is referred to as Hn in Culcer’s paper [29].
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expansion [24, 29]: since the wavepacket is localized, we only
need to know the values of φ(r) and A(r) near rc. Therefore,
they are expanded as

φ(r) � φ(rc)+ (r − rc) · ∂φ
∂rc

, (9)

A(r) � A(rc)+ (r − rc) · ∂A
∂rc

. (10)

Such an approximation is valid only if the potentials vary
slowly across the wavepacket.

The values of φc = φ(rc) and Ac = A(rc) do not need
to be small compared to the unperturbed part since they only
contribute to a shift in energy by −eφc and a shift in crystal
momentum by eAc (the charge of the carrier is −e). However,
the field strengths are limited by the adiabatic condition: the
total probability in these D bands should remain conserved.
There can be no tunneling out of this subspace.

Assuming the electric and magnetic fields are uniform,
choosing the symmetric gauge for the vector potential, and
neglecting nonlinear terms in A, one finds

E(rc,qc) = 〈W |Hc|W 〉 + e〈W |(r − rc)|W 〉 · E

+ e

2m
〈W |(r − rc)× (p + eAc)|W 〉 · B

= E0(kc)− eφ(rc)+ e

2m
L(kc) · B, (11)

where
Hc ≡ H0(r,p + eAc)− eφc. (12)

Notice that 〈W |(r − rc)|W 〉 is zero and kc ≡ qc + (e/h̄)Ac.
If a charged wavepacket is self-rotating, then it has an orbital
magnetic moment m = −e/(2m)L coupling with the magnetic
field and gives the Zeeman energy.

Since nonlinear terms have been neglected in the
calculation above, the following result is accurate only to linear
order of the fields. The nonlinear electromagnetic effect is thus
outside the scope of this review.

2.4. Wavepacket dynamics: Lagrangian and equations of
motion

Instead of solving the Schrödinger equation, we use the
time-dependent variational method to study the wavepacket
evolution in a crystal. Recall that in the usual time-independent
variational method one proposes a sensible wavefunction
with a few adjustable parameters. These parameters are
then determined by minimizing the energy 〈H 〉 of the
proposed state. In the time-dependent variational method, the
wavepacket is parametrized by the center of mass, rc(t) and
qc(t), and the spinor amplitude η = (η1, η2, . . . , ηD)

T. Any
possible change of shape of the wavepacket will be ignored.
One first calculates the effective Lagrangian,

Leff(rc,qc, η; ṙc, q̇c, η̇) = 〈W |
(

ih̄
d

dt
− H

)
|W 〉, (13)

then obtains the effective action Seff = ∫
dt Leff for a given

trajectory. Unlike the energy 〈H 〉 in the time-independent
variational method that depends on only a few parameters,

this effective action is a functional of the trajectory and the
time evolution of the spinor amplitude: (rc(t),qc(t), η(t)).
Therefore, one needs to use the method of variation to
determine the one that extremizes this action. The Euler–
Lagrange equations for this effective Lagrangian give us
equations of motion of the wavepacket.

By carefully analyzing the time-derivative term in
equation (13), one obtains

ih̄〈W | d

dt
|W 〉 = h̄

〈
u
∣∣∣i du

dt

〉
+ h̄qc · ṙc. (14)

The first term can further be decomposed as

h̄
〈
u
∣∣∣i du

dt

〉
= ih̄η† ∂η

∂ t
+ h̄k̇c · R(kc), (15)

where we have used the gauge-invariant crystal momentum
kc = qc+(e/h̄)Ac in place of qc as a basic variable. Therefore,
the effective Lagrangian is

Leff(rc,kc, η; ṙc, k̇c, η̇) = ih̄η† ∂η

∂ t
+ h̄k̇c · R + (h̄kc − eAc) · ṙc − E(rc,kc), (16)

in which E = 〈W |H |W 〉 is the wavepacket energy calculated
in equation (11) using the gradient expansion. Notice that there
are three pairs of independent variables, as indicated in the
argument of Leff.

After lengthy derivations, the Euler–Lagrange equations
of this effective Lagrangian give the following (coupled)
dynamical equations of the wavepacket [29]:

h̄k̇c = −eE − eṙc × B, (17)

h̄ ṙc = 1

i
η†

[
i
∂

∂kc
+ R,H

]
η − h̄k̇c × η†Fη, (18)

ih̄η̇ =
( e

2m
L · B − h̄k̇c · R

)
η, (19)

where E and B are the external fields, and R, F , and L are
all evaluated at the center of the wavepacket. The Hamiltonian
matrix within the commutator in equation (18) has the form

H(rc,kc) = E0(kc)− eφ(rc)+ e

2m
L(kc) · B, (20)

in which E0 − eφ is multiplied by an identity matrix.
Obviously, the spinor average of H is the wavepacket energy
in equation (11), E = η†Hη = ∑

nl η
∗
n Hnlηl .

From the spinor equation (19), one can immediately obtain
the equation for the spin vector, J = η†J η, where J is the
usual angular momentum matrix in quantum mechanics,

ih̄J̇ = η† [J ,H − h̄k̇c · R]
η. (21)

The only term in H that would contribute to the commutator
above is the Zeeman coupling. The correction to the
Hamiltonian that is proportional to the Berry connection R is
in fact a spin–orbit coupling. This will become clear in later
discussions.

4
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3. Semiclassical theory for a relativistic electron

To have a better grasp of the theoretical formulation in the
previous section, let us take the relativistic particle as an
illustrative example [33, 34]. The wavepacket is living in the
electron subspace. Since the electron states are separated from
the positron states by a huge energy gap mc2, the adiabatic
condition is hardly violated. It fails only if electron–positron
creation is not negligible. Furthermore, unlike the Bloch states
in a solid, the energy eigenstates of a free Dirac particle are
analytically known. Therefore, the calculations of R, F, and
L are clean and exact. These quantities are essential to the
dynamics of a Dirac wavepacket in an electromagnetic field.

3.1. Basics of the Dirac theory

The Dirac Hamiltonian in the presence of an electromagnetic
field is

H = cα · (p + eA)+ βmc2 − eφ(r), (22)

where α and β are the Dirac matrices,

α =
(

0 σ

σ 0

)
, β =

(
I 0
0 −I

)
, (23)

in which σ are the Pauli matrices and I is the 2 × 2 identity
matrix. The off-diagonal matrix cα is the velocity operator for
the Dirac electron.

In the absence of an external field, one can perform the
following unitary transformation to diagonalize the Hamilto-
nian, H0 = eiS H0de−iS , where H0d = √

c2|p|2 + m2c4β has
positive-energy and negative-energy branches (each branch has
two degenerate levels). The unitary operator eiS = e

ω
2 βα·p/|p|,

where tanω = p/mc [35]. The four independent plane-wave
solutions of H0 are of the form ψl(r) = eiq·rul(r), where
the spinor ul can be obtained from the four-component unit
spinor el via the unitary rotation, ul = eiSel .

We emphasize that these solutions remain normalized
at any velocity. The equally valid solutions obtained from
the unit spinors via a Lorentz boost are not normalized,
since the particle density is not invariant under the Lorentz
transformation. These two sets of solutions have slightly
different normalization constants, but otherwise are of the same
form. However, the Berry connection R in equation (4) can be
Hermitian only if we use the normalized eigenstates, which are
obtained from the unitary rotation.

3.2. Basics of the Dirac wavepacket

The Dirac wavepacket is constructed from the free-particle
states with positive energy E0 =

√
c2h̄2q2 + m2c4 (see

figure 1),

|W 〉 =
2∑

n=1

∫
d3 qa(q, t)ηn(q, t)|ψn〉. (24)

In such a subspace with twofold spin degeneracy, the Berry
connection and curvature are 2 × 2 matrices. Using the

Figure 1. The Dirac spectrum has two branches separated by a huge
mass gap. Each branch is twofold degenerate. Therefore, the
wavepacket on the positive-energy branch has two localized
probability amplitudes.

definitions in equations (4) and (5), after some calculations,
one can obtain

R = λ2
c

2γ (γ + 1)
q × σ , (25)

F = − λ2
c

2γ 3

(
σ + λ2

c

q · σ

γ + 1
q
)
, (26)

where λc = h̄/mc is the Compton wavelength, and γ (q) ≡√
1 + (h̄q/mc)2. The dilation factor γ reduces to one when

the electron is at rest (q = 0).
It is remarkable that even a free electron would have a

non-trivial gauge structure. The Berry connection vanishes
at zero velocity but the Berry curvature reduces to a non-
zero quantity proportional to the Pauli matrix, −(λ2

c/2)σ .
The Berry curvature is not originated from level crossing and
therefore is nothing like a monopole field. A similar result has
been reported in [36, 37].

The other truly remarkable result is that such a free-
electron wavepacket is in fact self-rotating with an orbital
angular momentum [34]. A straightforward application of
equation (8) gives4

L = h̄

γ 2

(
σ + λ2

c

q ·σ
γ + 1

q
)
. (27)

4 It has a functional form similar to F . This is related to the fact that, when
L is written in the form of equation (51) (shown later), it differs from an
alternative form of the Berry curvature in equation (50) only by a factor of
energy (apart from some constants). In the two-branch model we used, this
only brings about a difference of a factor of 2E0.

5
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After spinor average, this self-rotating wavepacket generates
a magnetic moment m = −e/(2m)L that couples with
the magnetic field and gives rise to the Zeeman energy in
equation (11). The coefficient −e/(2m) finds its origin in the
fact that L = ∫

d3r(r − rc) × mj(r), where j is the current
density, while m = 1

2

∫
d3r(r − rc)× (−e)j(r).

When the momentum q is zero, the orbital angular
momentum L reduces to h̄σ , twice the spin angular
momentum. It produces a Zeeman energy identical to the usual
one in which the spin is (h̄/2)σ and the g-factor is 2. However,
we emphasize that the g-factor in our formulation equals one,
not two! That is, in the wavepacket description, there is no
need to assign a special g-factor to the electron spin.

Neither in the Dirac equation nor in its four-component
wave functions can one find explicit trace of the spin. The
established mathematical procedures, such as the Foldy and
Wouthuysen transformation [22], for extracting the Zeeman
interaction are usually complicated, and the appearance of the
intrinsic magnetic moment for the electron has always been
mysterious. The wavepacket approach offers an alternative and
very intuitive picture explaining the origin of the electron spin:
it is indeed a self-rotating motion that produces the angular
momentum in equation (27). Such a delightful result is a
natural consequence of the wavepacket theory and requires no
forced assumption. For more discussions on the spinning Dirac
wavepacket, one can also see [38].

3.3. Dynamics of the Dirac wavepacket

Once the quantities H, R, F , and L are known, one can
proceed to derive the equations of motion in equations (17)–
(19). Correct to linear order in fields, the equations of motion
for the center of mass are

h̄k̇c = −eE − e
h̄kc

γm
× B, (28)

ṙc = h̄kc

γm
+ e

h̄

(
E × F + B · F

h̄kc

γm

)
, (29)

where γ = γ (kc) and F = η†Fη is the spinor-averaged Berry
curvature. The equation for spin precession in equation (21)
for the Dirac electron has the following form:

〈σ̇ 〉 = e

γm

[
B + E × h̄kc

(γ + 1)mc2

]
× 〈σ 〉. (30)

This is the Bargmann–Michel–Telegdi (BMT) equation for a
relativistic electron [39]. The second term proportional to the
electric field couples the orbital motion with the spin. It is
originated from the −h̄k̇ · R term in equation (21) and thus is
closely related to the Berry connection.

If we turn off the magnetic field in equations (28) and (29),
then the trajectory is much simpler but still non-trivial. There
is a linear acceleration along the direction of the electric
field, h̄k̇c = −eE, which is reasonable. However, there
is a transverse velocity as a result of the Berry curvature in
equation (29), even though there is no external force along this
direction! The magnitude of the transverse particle momentum

Figure 2. An electron is accelerated by a static electric field in the
capacitor. The Berry curvature and the magnetic moment point into
the page, giving rise to an anomalous velocity pointing to the right.

is m(e/h̄)E × F, which reduces to E × m/c2 at low velocity,
where m = −e/(2m)L (see figure 2).5

From a historical perspective, one can also understand
such a curved trajectory in the following way: the theory of
relativity tells us that a moving magnetic dipole m generates
an effective electric dipole peff = v × m/c2 [41]. Being in
a uniform field, the electron feels no gradient dipole force.
However, it acquires a dipole energy −peff · E. Such a term
contributes to the classical Hamiltonian. Therefore, from the
Hamiltonian equation ṙ = ∂H/∂p, one would get an extra
velocity v = E × m/(mc2), the same as the particle velocity
above6.

It would be very impressive to confirm such a trajectory
shift in free space. The electron can be accelerated by a
parallel-plate capacitor with a potential difference V0. Aligning
the electron spin perpendicular to the electric field maximizes
the effect. When moving from one plate to another, the electron
trajectory will be shifted sideways by a distance λc

√
eV0/2mc2

(assuming the electron is initially at rest). That is, for a
potential difference of 1 MeV, the shift is of the order of
the Compton wavelength, which is two orders of magnitude
smaller than the size of a hydrogen atom. One can alternate
the polarity of the electrodes to synchronize with the electron
motion and amplify the shift. Nevertheless, a huge potential
difference is required and such an observation will not be easy.

4. Canonical quantization

The wavepacket approach for electron transport, even though
approximate in general, can be accurate at a certain limit. One

5 Whenever a magnetic dipole m produced by a current loop (such as the
wavepacket here) is put in an electric field E, it is accompanied by a hidden
momentum phidden = m × E/c2 [40, 41]. When this is taken into account,
one finds that the part of h̄kc that is perpendicular to E remains conserved,
consistent with its equation of motion.
6 In addition to the velocity mentioned above, the effective electric dipole is
closely related to the electric polarization generated by a spin current; see [42].
In the free space, a spin current can be modeled by counter-propagating beams
of bare spin-up and spin-down electrons. It has been known for a long time
that the charge center of the beams does not coincide with its mass center [43].
This is a direct result of the fact that the effective polarizations of both beams
point in the same direction.
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can take advantage of the simplicity of the semiclassical theory
and re-quantize it to study various quantum phenomena. Under
this certain limit, the prediction of the simplified (effective)
quantum theory could be as accurate as the original quantum
theory.

In an earlier work, we used the Bohr–Sommerfeld
condition to re-quantize the cyclotron orbit and successfully
predicted the positions of Landau levels in magnetic Bloch
bands [7]. This approach, however, is limited to integrable
systems with closed trajectories. Here we use the method
of canonical quantization that does not have these restrictions
and, moreover, can be applied to the multi-band cases. We
demonstrate that the knowledge of H, R, F , and L in the
semiclassical formulation is sufficient for us to obtain the
correct quantum theory.

In this section, we first find out the classical canonical
variables, then promote the Poisson bracket to a commutator.
As a result, the dynamical variables become operators acting
on a Hilbert space and the theory is thus ‘quantized’. That is,
we can turn the wavepacket energy into an effective quantum
Hamiltonian. The Dirac wavepacket will again be used as an
example and its effective quantum Hamiltonian turns out to be
the well known Pauli Hamiltonian.

4.1. Deriving canonical variables

The complementary pair (r,p) are canonical variables if their
equations of motion have the following canonical form:

ṙ = ∂E

∂p
; ṗ = −∂E

∂r
. (31)

This also means that their Poisson brackets have the canonical
form

{rα, rβ } = 0,

{pα, pβ} = 0,

{rα, pβ} = δαβ .

(32)

The variables rc and kc that depict the trajectory of
the wavepacket are not canonical variables because their
equations of motion are not of the form above. This is
due to the gauge potentials, A(rc) and R(kc), that generate
rich dynamics but are otherwise harmless. However, in
order to re-quantize the theory, one needs to find canonical
variables with a simple Poisson bracket. In principle, this
can always be done, as assured by the Darboux theorem [44].
Investigation along this path offers a powerful tool for the
quantization.

In general, there is no easy way to exactly construct
the canonical variables for systems with non-Abelian gauge
potentials. However, for the wavepacket theory in this review,
which is accurate only to linear fields, there is a simple way
of finding them even for the multi-band version. It is crucial
to observe that the source of non-canonicity is the presence
of the gauge potentials, A(rc) and R(kc), in the Lagrangian.
They need to be removed when the Lagrangian is written in
the canonical variables r and p. That is, once the Lagrangian

in equation (16) can be written in the standard form (up to a
total time derivative),

Leff = ih̄η† ∂η

∂ t
+ p · ṙ − E(r,p), (33)

then the new variables r and p will automatically be canonical7.
It is reasonable to make the initial guess

h̄kc = h̄k + eA(rc); rc = x + R(kc), (35)

and rewrite the effective Lagrangian in equation (16) in the new
variables, x and k, as

Leff = ih̄η† ∂η

∂ t
+ eȦ · R + h̄k · ẋ − E(x,k)+ d

dt
(h̄k · R) ,

(36)

in which the total time derivative will be ignored. This is
still not of the standard form. To fix it, we choose a gauge
A = 1

2 B × rc and write eȦ ·R = e
2 R×B ·(ẋ + Ṙ). After some

rearrangement, one will get

eȦ ·R+ h̄k ·ẋ =
[
h̄k + e

2
R(kc)× B

]
·ẋ+G(kc) ·h̄k̇c, (37)

where Gα(kc) ≡ (e/h̄)(R × B) · ∂R/∂kcα.
The term proportional to G can be removed by further

shifting the position variable, x = r + G. After throwing
away a total time derivative d(G · h̄kc)/dt and a term explicitly
nonlinear in B , we finally have

Leff = ih̄η† ∂η

∂ t
+

[
h̄k + e

2
R(kc)× B

]
· ṙ − E . (38)

Obviously, the quantity in the square bracket should be
identified as the canonical momentum p conjugate to the
variable r (see equation (33)). Therefore, the connections
between new and old variables are [16]

r = rc − R(kc)− G(kc),

p = h̄kc − eA(rc)− e

2
B × R(kc).

(39)

The inverses of the relations are (again accurate to linear fields)

rc = r + R(π)+ G(π),

h̄kc = π + eB × R(π),
(40)

where π = p + eA(r). This is the correct generalization of the
Peierls substitution for systems with Berry connection R. It
reduces to the usual Peierls substitution when R = 0. Similar
equations can be found via a route slightly more complicated
than the one reported here [46].

Two comments are in order. First, the center-of-mass
variables are gauge invariant, but the canonical variables are
not. Therefore, only the center-of-mass variables can be
considered as physical variables. Second, the G-term would
further shift the position operator, but does not influence the
velocity to linear order of fields. Similarly, the B × R-term
would shift the momentum, but does not alter the force to the
same order.
7 It is possible to rewrite the first term in Leff as the Wess–Zumino term,

iη† dη

dt
= −S

∫ 1

0
dλŜλ · ∂Ŝλ

∂λ
× ∂Ŝλ

∂t
, (34)

where S is the spin vector. See [45] for more details. However, we use the
spinor amplitude η as a basic variable in the Lagrangian, instead of the spin
vector S.

7
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4.2. Effective quantum Hamiltonian

When written in the canonical variables, the wavepacket
energy in equation (11) becomes

E(r,p) = E0(π)− eφ(r)+ eE · R(π)

+ e

2m
B ·

[
L(π)+ 2R × m

∂E0

∂π

]
. (41)

The third term on the RHS comes from expanding the
electrostatic potential φ(rc) about the canonical position r to
first order, with nonlinear terms neglected. It has the form
of a dipole energy, with R being the displacement of the
charge center. Later we will see that this term represents the
usual spin–orbit interaction. The last term has the form of the
Zeeman energy, but in addition to the usual magnetic moment
generated by L there is an extra term from expanding the band
energy E0(kc) about π to first order. We will call it a Yafet
term [21, 47, 48].

The effective quantum Hamiltonian can be obtained from
the wavepacket energy by the standard procedure of promoting
the variables to operators,

[rα, rβ ] = 0, [pα, pβ] = 0, [rα, pβ] = ih̄δαβ.

In addition, the basic quantities, R, F, and L, also need to be
promoted to matrices, R, F , and L.

The effective Hamiltonian, being a function of π , is
invariant under the electromagnetic gauge rotation. However,
the terms explicit in the Berry connection R, such as the dipole
energy and the Yafet term, are not invariant under the gauge
rotation that re-shuffles the spinor basis. Therefore, it would be
tricky to give a clear physical interpretation to each individual
term. The original semiclassical theory based on the physical
center-of-mass variables, on the other hand, is free of any
gauge ambiguity.

4.3. Relativistic Pauli Hamiltonian

In this subsection, we will again take the Dirac electron as
an example to illustrate the power of this re-quantization
procedure. Combining equations (11) and (27), one has the
energy of a Dirac wavepacket (E0 = γmc2),

E(rc,kc) = E0(rc)− eφc + e

2m
L(kc) · B

= γmc2 − eφ(rc)+ μB

γ 2
〈σ 〉 · B

+ μB

γ 2(γ + 1)

h̄kc

mc
· 〈σ 〉 h̄kc

mc
· B, (42)

in which all the γ are functions of kc and μB = eh̄/2m. In the
next step, the generalized Peierls substitution in equation (40)
is used to write the energy in canonical variables. One needs,
for example,

γ (kc)mc2 = mc2

√
1 +

(
π + eB × R

mc

)2

� γ (π)mc2 + μB〈σ 〉 · B
(
γ − 1

γ 2

)

− μB

m2c2

π · 〈σ 〉π · B

γ 2(γ + 1)
, (43)

in which all the γ are functions of π . After some
more calculations, one obtains an energy slightly simpler in
form,

E(r,p) = γ (π)mc2 − eφ(r)+ μB

γ
〈σ 〉 · B

+ μB

γ (γ + 1)

π

mc2
× 〈σ 〉 · E. (44)

In the final step, one promotes the classical canonical
variables r and p to quantum canonical variables, and 〈σ 〉 to
Pauli matrices. The result is the effective quantum Hamiltonian
for an electron living on the positive-energy branch. It allows
no inter-branch transition (i.e. pair creation), but otherwise is
valid for all velocities of the electron. At low velocity, it
reduces to the familiar Pauli Hamiltonian.

This is by no means a trivial result since the
gauge-invariant momentum operator π appears inside the
square root in the denominator. In the usual textbook
derivation, one performs successive Foldy–Wouthuysen (FW)
transformations [49], treating the electron velocity as an
expansion parameter. Such a unitary transformation quickly
becomes very complicated at high velocity. One has to
ingeniously come up with the correct unitary operator directly,
assisted by some guessing, in order to reach the closed form
in equation (44) [50]. By comparison, the approach presented
here offers a simple and systematic way to derive an effective
Hamiltonian when one has difficulty implementing an FW-like
transformation.

4.4. Discussion

In addition to the re-quantization approach reported above,
we would like to mention two other methods for obtaining
an effective Hamiltonian. One method uses the unitary
transformation to block-diagonalize a Hamiltonian. This is
the method used by Foldy and Wouthuysen to obtain the
Pauli Hamiltonian from the Dirac Hamiltonian [22]. Another
method uses projection operators to restrict the extent of a
Hilbert space [51]. This method has been implemented in
single-particle as well as many-body quantum systems. More
discussion of the effective Hamiltonian can also be found in
Nenciu’s review [27].

The zero-field Dirac Hamiltonian can be diagonalized by
the unitary rotation given below equation (23). However, an
external electric or magnetic field generates off-diagonal terms
in the Hamiltonian matrix. One can perform the second unitary
rotation UBD to eliminate such couplings between positive- and
negative-energy branches. This is the block-diagonalization
process used in the FW transformation [22]. The Dirac
Hamiltonian then consists of two disjoined pieces. Each piece
is the effective 2×2 Hamiltonian for the corresponding energy
branch. That is, Heff,± = P±U †

BD HUBD P±, where P± is
the projection operator onto the positive-energy branch or the
negative-energy branch.

This diagonalization method was used extensively in the
1950s and 1960s to obtain the effective Hamiltonian of a Bloch
electron [4, 20, 21, 52]. In principle, one can systematically
go beyond the linear order and obtain effective interactions

8
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nonlinear in field, but the derivation could be (in Kohn’s words)
‘shockingly complicated’ [53].

One thing to keep in mind is that, as a result of the unitary
transformation, the basis states are changed. Therefore, the
explicit representation of an observable, such as the position
operator, would also change. This fact is stated most clearly
in the original paper by Foldy and Wouthuysen [22, 54].
For example, in the one-band effective theory, reff,n =
PnU †

BDrUBD Pn , where Pn projects to the nth band. In the
simplest case when UBD = 1, the effective position operator
has a simple correction from the Berry connection [4],

reff,n = PnrPn =
〈
ψnq′

∣∣∣∣ih̄ ∂∂p

∣∣∣∣ψnq

〉

=
[

i
∂

∂q
+ Rn(q)

]
δ(q − q′), (45)

where Rn(q) is the Berry connection of the nth band. It
is not unusual to apply only the projection and ignore the
unitary transformation: the off-diagonal matrix elements in the
Hamiltonian are often linear in field. After the unitary rotation,
they would usually translate to quadratic terms in the block-
diagonalized Hamiltonian. Therefore, if one is only interested
in an effective Hamiltonian linear in field, then it may not
be necessary to perform the rotation UBD. In such cases, the
effective position operator is obtained simply by the one-band
projection.

It is also possible to obtain an effective Hamiltonian using
nothing but the projection operator. One divides the complete
Hilbert space into two orthogonal parts, one relevant and one
irrelevant. Consider a time-independent Schrödinger equation,

(H0 + V )|�〉 = E |�〉, (46)

where V is a perturbation, and H0|�(0)〉 = E0|�(0)〉. It can
be shown that the projected (relevant) state P|�〉 satisfies the
following equation [51, 55]:

Heff(P|�〉) = E(P|�〉). (47)

The effective Hamiltonian has the following form:

Heff = H0 + PV P + PV
1

E0 − QH Q
V P

+ PV
1

E0 − QH Q
V

1

E0 − QH Q
V P + · · · , (48)

where Q = 1 − P projects to irrelevant subspace. This
projection method has been used, for example, in deriving the
Fano–Feschbach resonance [56], the ‘poor man’s method’ of
renormalization [57], and the one-band effective Hamiltonians
of quantum Hall systems [58, 59].

5. Hierarchy of effective theories

The process of constructing a semiclassical theory out of a
given quantum theory, then using the re-quantization method
to turn it back to an effective quantum theory, can be executed
iteratively to generate a hierarchy of effective theories.

The Dirac theory in equation (22) for lattice electrons
can be considered as the theory at the top of the solid-state-
theory hierarchy. Instead of solving the Dirac–Bloch spectrum

directly, which is more difficult, one can first treat the periodic
potential φ(r) as a smooth external potential. This is justified
since the Dirac wavepacket can be as small as the Compton
wavelength, two orders of magnitude smaller than the size of
an atom. Therefore, earlier discussion on the Dirac wavepacket
in section 3 is fully applicable in such a periodic environment.
One first has the semiclassical Dirac theory, then the re-
quantization leads to the two-component Pauli theory. We
emphasize again that, from the semiclassical point of view, the
electron spin is a direct result of the self-rotation of the Dirac
wavepacket.

Starting from the quantum Pauli theory, one can solve
for the Bloch energy bands with the relativistic and the spin–
orbit effects. By focusing on closely packed multiple bands of
interest, one can climb down the hierarchy a notch further. For
example, in semiconductor physics, one is often interested in
only the conduction and the valence bands above and below
the chemical potential. Therefore, depending on the desired
accuracy, one can construct an effective theory having only
four bands (Luttinger model), eight bands (Kane model), or
12 bands (extended Kane model) near the fundamental gap.
This will be the subject of the next section. In this section, the
hierarchy structure is studied from a more general perspective.

5.1. Gauge-invariant ingredients of an effective theory

In order for the re-quantization to work correctly, it is essential
that the three gauge-invariant quantities, E0, F, and L (or their
matrix version for multiple bands, which are gauge covariant),
are encoded in the semiclassical description. Since the Bloch
energy E0 is a rather well known concept, we focus only on the
latter two quantities here.

In the multi-band version, the Berry curvature and self-
rotating angular momentum defined in equations (5), (8)
can be rewritten in alternative forms more convenient for
calculation [16]. First we write equation (5) in the component
form,

Fmn = ∂

∂q
×

〈
um

∣∣∣∣i ∂∂q
un

〉
− i

∑
l∈in

〈
um

∣∣∣∣i ∂∂q
ul

〉
×

〈
ul

∣∣∣∣i ∂∂q
un

〉

= i

〈
∂

∂q
um

∣∣∣∣ ×
∣∣∣∣ ∂∂q

un

〉
− i

∑
l∈in

〈
∂

∂q
um

∣∣∣∣ul

〉
×

〈
ul

∣∣∣∣ ∂∂q
un

〉
,

(49)

where l sums over the states inside the wavepacket space. One
can insert a complete set

∑
l to the first cross-product term,

where l sums over the states in the whole Hilbert space. After
canceling with the

∑
l∈in in the second term, one has

Fmn = i
∑
l∈out

Rml × Rln, (50)

where Rml is the Berry connection, and l sums over the
states outside of the wavepacket space. Similarly, by inserting
a complete set to the bracket in equation (8), and using
H̃0|ul(∈in)〉 = E0|ul(∈in)〉, one has

Lmn = m0

ih̄

∑
l∈out

(E0,m − E0,l)Rml × Rln . (51)

9
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Figure 3. The relations between wavepacket space, parent space, and
full space.

In the following, these two formulas are used to calculate
the Berry curvature and the orbital angular momentum of a
subspace.

In principle, equations (50) and (51) are exact if the
summation is over the entire Hilbert space outside the
wavepacket space. In practice, one often starts with a limited
parent space, thereby neglecting terms from remote states
outside this parent space (see figure 3). Let us call the
approximate Berry curvature and orbital angular momentum
obtained this way F ′ and L′. In addition, let us assume
that the neglected remote states generate a Berry curvature
Fp and an orbital angular momentum Lp in the parent space,
which is a subspace of the full space (see figure 3). Then
from equations (50) and (51) they give corrections to the
approximate F ′ and L′ as follows:

F = F ′ + PF p P,

L = L′ + PLp P,
(52)

where P is the projection from the parent space to the
wavepacket subspace. These relations describe precisely how
the Berry curvature and orbital angular momentum should be
renormalized. There is no need to refer back to the remote
bands, once the Berry curvature and orbital angular momentum
of the parent space are known.

Two comments are in order: first, the Berry curvature of
the full Hilbert space for a given quantum model is always
zero, since there is no ‘outside’ state in equation (50) [60].
The same is true for the self-rotating angular momentum.
However, whether a Hilbert space is full or not is a relative
concept. From the perspective of a more detailed quantum
model with more degrees of freedom, the original Hilbert space
is no longer full, but is only a subspace of a larger Hilbert
space. Therefore, this subspace now can have its own Berry
curvature. For example, from the viewpoint of the Dirac theory
in equation (22), the positive-energy branch has a non-zero
Berry curvature, whereas the four-component state itself is
‘flat’. However, this latter fact is no longer true if the Dirac
theory is considered as an effective theory of an even more
complete theory (see section 5.3 for more discussions).

Second, the Berry curvature often can be attributed to a
topological object in the parameter space. For example, it
could be due to a U(1) monopole at the location of level
crossing [1]. The monopole charge is related to the first
Chern number in the mathematical theory of fiber bundles [61].
The non-Abelian Berry curvature in this review is a result
of projection, not level crossing. It has been shown that
the Berry curvature in the Dirac theory is generated from
a meron [37], an instanton with a topological charge 1/2.
In the four-band Luttinger model (see next section), the
Berry curvature is generated from an instanton with integer
topological charge [62, 63].

5.2. Position and velocity

As we mentioned earlier in section 4.4, rotating the basis
states of a Hilbert space amounts to a rotation of all operators,
not only the Hamiltonian operator. Therefore, the effective
Hamiltonian is only part of the story. From the ‘parent theory’
point of view, one also needs to know how the physical
variables (e.g. rc) are related to the canonical variables (e.g. r,
which is unphysical due to its gauge dependence) in the
Hamiltonian to avoid mistakes.

In the generalized Peierls substitution (neglecting the G-
term), rc = r+R, r is the position operator of the re-quantized
theory. The re-quantized theory can have its own semiclassical
theory, with its own wavepacket centered at ra ≡ 〈r〉. On
the other hand, there is the original wavepacket centered at
rc. How would the motions of these two wavepackets relate
to each other if they are living in the same Hilbert space?

To illustrate the difference, we consider only the simpler
case with B = 0. A more detailed discussion using the Dirac
electron as an example can be found in appendix A. For the
original wavepacket, with the help of equations (17), (18),
and (20), one has

h̄ṙc =
〈
∂H0

∂kc

〉
+ eE × 〈F〉 , (53)

where the angular bracket performs the spinor average. On
the other hand, the other wavepacket is assumed to live in
the full Hilbert space of the effective theory with Heff(r) =
H0−eφ(r)+eE ·R. As we have just explained in the previous
subsection, the Berry curvature of a full Hilbert space is always
zero. Therefore, one can choose a trivial gauge for the Berry
connection inside the bracket in equation (18) and obtain

h̄ ṙa =
〈
∂H0

∂ka

〉
+ e

〈
∂

∂ka
E · R

〉
, (54)

in which ka = kc when B = 0 (so the subscript will
be dropped). The transverse velocities in equation (53) and
equation (54) are obviously different.

One can improve the result in equation (54) by including
the missing piece, 〈Ṙ〉 = 〈[R,H]/ih̄〉+ 〈∂R/∂ t〉. It gives the
following correction:

h̄〈Ṙ〉 = −ie 〈[R,E · R]〉 − e

〈
E · ∂

∂k
R

〉
. (55)
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When combined with h̄ṙa , it is not difficult to check that one
would indeed recover the correct result in equation (53).

For example, the Pauli theory is a valid effective theory of
the Dirac theory. They both produce the same positive-energy
spectrum. However, starting from the Pauli theory alone, in
the non-relativistic limit and with B = 0 for simplicity, the
velocity of a Pauli wavepacket reads

ṙa = h̄k
m

+ eλ2
c

4h̄
〈σ 〉 × E. (56)

On the other hand, for a Dirac wavepacket, one has

ṙc = h̄k

m
+ eλ2

c

2h̄
〈σ 〉 × E. (57)

The transverse velocity of the Pauli wavepacket is smaller by a
factor of two. That is, the Pauli theory does not always give a
correct dynamical prediction even in the low-velocity limit. The
lesson is that the effective Hamiltonian alone does not specify
the effective theory completely. To avoid mistakes, one also
needs to know how the physical variables are related to the
canonical variables of the theory.

5.3. Dirac theory as an effective theory

At finer length scale or higher energy scale, even the Dirac
theory itself is not complete. It needs to be embedded in
a larger Hilbert space with more degrees of freedom. One
example is the theory of electrons interacting with a quantized
electromagnetic field. Another example is the theory for
nucleons with inner structures. In these cases, the Dirac theory
itself is an effective theory projected from a larger Hilbert
space including photons or quarks.

By now, one should be familiar with the fact that such
a projection can often generate a gauge structure (due to R
and F) and a magnetic moment (due to L) in the effective
theory. Indeed, the anomalous magnetic moment (AMM) of
a Dirac particle originates either from the coupling with a
quantized electromagnetic field, or from the internal motion
of the constituent quarks in a nucleon. It contributes an energy
in addition to those in equation (22) [49],

H ′ = aμBβ

(
Σ · B − iα · E

c

)
, (58)

where a = g/2 − 1 and Σ is the 4 × 4 spin matrix. Such an
interaction will be treated as a perturbation to H0.

The perturbation energy is calculated as E ′ =
〈W |H ′|W 〉 = ∑

mn η
∗
m〈um |H ′|un〉ηn [29], where |um〉 (m =

1, 2) are the positive-energy eigenstates of H0 (being evaluated
at kc). With the help of the two identities,

〈um |βΣ|un〉 =
[
σ − λ2

c

γ (γ + 1)
kc(kc ·σ )

]
mn

, (59)

i〈um |βα|un〉 =
[
λc

γ
σ × kc

]
mn

, (60)

one has

E ′ = aμB

γmc2
h̄kc × 〈σ 〉 ·E + aμB

[
〈σ 〉 − h̄kc · 〈σ 〉h̄kc

γ (γ + 1)m2c2

]
·B.

(61)
Unlike the wavepacket energy in equation (11), the

spin–orbit coupling is now explicit from the very beginning
(before the Peierls substitution). It indicates that, when the
particle has an AMM, the true center of charge r′

c has been
displaced further from the rc of a Dirac wavepacket. Such
a displacement R′ generates a spin–orbit interaction eE · R′.
By comparing with the spin–orbit energy in equation (61), we
obtain R′ = a(λ2

c/2γ )kc × 〈σ 〉. Indeed, if one simply replaces
the rc and e/2m in equation (11) with r′

c = rc + R′ and
eg/4m respectively, then the energy E ′ above can be exactly
reproduced.

The equations of motion for a particle with AMM will not
be reported in detail. A short discussion on its spin precession
can be found in appendix B.

Following the same re-quantization scheme using the
generalized Peierls substitution, we can again obtain the
relativistic Pauli Hamiltonian with the AMM correction. First,
by combining the energies in equations (42) and (61), the total
energy becomes

E(rc,kc) = γmc2 − eφ(rc)+ μB〈σ 〉 · B
(

1

γ 2
+ a

)

+ aμB

γmc2
h̄kc × 〈σ 〉 · E

+ μB

m2c2
h̄kc · 〈σ 〉h̄kc · B

[
1

γ 2(γ + 1)
− a

γ (γ + 1)

]
,

(62)
in which γ = γ (kc). Then one can use the generalized Peierls
substitution to write the energy in canonical variables. Such
a result is a generalization of equation (44). Promoting the
canonical variables to quantum conjugate variables, we finally
obtain the following relativistic Pauli Hamiltonian:

H(r,p) = γmc2 − eφ(r)+ μBσ · B
(

1

γ
+ a

)

+ μB

γmc2
π × σ · E

(
1

1 + γ
+ a

)

− aμB

m2c2

π · σπ · B
γ (γ + 1)

, (63)

in which γ = γ (π). This result is an extension of the low-
velocity one reported in [64].

We emphasize that the presence of the electric dipole
energy indicates that the theory is only an effective one. The
position of the particle in the effective theory should differ
from the true position by a Berry connection. Of course, in
predicting the trajectory of the particle, one always has to
refer to its true position. Therefore, in the Dirac theory with
H ′ = aμBβ(Σ ·B − iα ·E/c), the true position is conjectured
to be rD + RD, where rD is the usual position operator in
Dirac theory, and RD = (aμB/e)(−iβα) is the displacement
required to generate the electric field term in H ′. Thus, the true
velocity operator of the particle should be

ṙD + ṘD = (1 + a)cα − aβ
π

m
+ a2μB

mc

(
E
c

× Σ + γ5B
)
.

(64)
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H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eg + p2

2m0
0 − 1√

2
V p+

√
2
3 V pz

1√
6
V p− 0 − 1√

3
V pz − 1√

3
V p−

0 Eg + p2

2m0
0 − 1√

6
V p+

√
2
3 V pz

1√
2
V p− − 1√

3
V p+ 1√

3
V pz

− 1√
2
V p− 0 −P − Q −L −M 0 1√

2
L

√
2M√

2
3 V pz − 1√

6
V p− −L∗ −P + Q 0 −M −√

2Q −
√

3
2 L

1√
6
V p+

√
2
3 V pz −M∗ 0 −P + Q L −

√
2
3 L∗ √

2Q

0 1√
2
V p+ 0 −M∗ L∗ −P − Q −√

2M∗ 1√
2

L∗

− 1√
3
V pz − 1√

3
V p− 1√

2
L∗ −√

2Q −
√

3
2 L −√

2M −
− γ1 p2

2m0
0

− 1√
3
V p+ 1√

3
V pz

√
2M∗ −

√
3
2 L∗ √

2Q 1√
2

L 0 −
− γ1 p2

2m0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (65)

The magnitude of the anomaly a for an electron is of the order
of 10−3 and might be too small for such a difference to be
observed. However, the anomaly for a nucleon is of order one.
Therefore, it is possible to observe and verify such a deviation
in experiments using relativistic nucleon beams8.

6. Applications to semiconductor physics

We now turn our attention to an important application of the
semiclassical approach. Using the eight-band Kane model
as the parent theory, different gauge structures in different
subspaces of the Kane model will be studied [16]. It is
shown that the Berry curvature in the conduction band gives
the wavepacket a spin-dependent transverse velocity even in
bulk materials. A similar situation exists in valence bands
and produces the spin Hall effect predicted by Murakami et al
[11, 12]. We have also calculated the self-rotating angular
momenta of the wavepackets in the conduction band and
the valence band, from which one can obtain the anomalous
g-factors. Finally, the effective Hamiltonians for different
subspaces will be studied.

6.1. Berry connection in the Kane model

Starting with the eight-band Kane model, we study the
wavepacket dynamics in its subspaces, such as the conduction
band, the heavy hole–light hole (HH–LH) complex, and the
spin–orbit split-off (SO) band (see figure 4). Each band has
a twofold spin degeneracy. Assuming the fundamental gap
is located at k = 0, then for a small k one can expand the
states as u(k) = ∑

j c j u j(0). The Schrödinger equation,
H u(k) = Eu(k), has the following Hamiltonian [23]:

(see equation (65) given above)

8 However, when the velocity is projected to the subspace of a particle with
positive energy, one has PcαP = π/(γm). It would cancel with the term
Pβπ/m P = π/m to leading order of the velocity. Therefore, the leading
(field-free) correction is of the order of a(v/c)2 only.

Figure 4. Schematic plot of the semiconductor band structure near
the fundamental gap.

in which Eg is the fundamental gap, 
 is the spin–orbit split-
off gap, p = h̄k, and

P = γ1

2m0
p2, Q = γ

2m0
(p2

‖ − 2p2
z ),

L = −
√

3γ

m0
pz p−, M = −

√
3γ

2m0
p2

−,
(66)

V = h̄

m0
〈S| p̂x |X〉. (67)

The matrix elements are ordered from higher energy to lower
energy from the upper-left corner to the lower-right corner.
That is, the upper-left 2 × 2 matrix is for the conduction
electron. Simple truncation (projection) to the 4 × 4 matrix in
the middle gives us the four-band Luttinger model for the HH–
LH complex; the lower-right 6 × 6 matrix is for the six-band
Luttinger model including the SO band. For demonstration, a
simpler Hamiltonian with γ2 = γ3 ≡ γ is chosen. Also, we
do not distinguish between the usual band parameters and the
reduced band parameters.

12
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One first needs to obtain the basic quantities R, F , and
L. Because of the anomalous velocity (the second term on
the RHS) in equation (18), a non-zero Berry curvature in
the conduction band or the valence band arising from the
projection would immediately imply a transverse motion of the
carrier that resembles the Hall effect. In this subsection, we
focus first on the Berry connection R defined in equation (4),
in which |un〉 are the eigenstates of the above Hamiltonian.
It is unlikely for one to obtain these eigenstates by analytic
diagonalization. Therefore, an alternative approach given in
appendix C is used. It allows one to obtain the small-k limit of
the Berry connection.

Instead of going through the details, we just show the
result for the Berry connection of conduction electron. The
result correct to the order of k1 is9

R = V 2

3

[
1

E2
g

− 1

(Eg +
)2

]
σ × k. (68)

Therefore, the dipole term eE · R becomes

Hso = eE ·R = αE ·σ × k, (69)

where α ≡ (eV 2/3)[1/E2
g − 1/(Eg + 
)2]. This accounts

for the spin–orbit coupling of a conduction electron. It
requires neither bulk-inversion asymmetry, as in Dresselhaus
coupling [65], nor structure-inversion asymmetry, as in Rashba
coupling [66]. However, unlike the Rashba coupling in
asymmetric quantum wells, in which the interface electric field
plays a crucial role, here one needs to supply an external
electric field E . When there is no spin–orbit split-off (
 = 0),
the coefficient α vanishes as expected.

In addition, the Berry connections for the HH–LH
complex and the split-off band are shown in table 1. They have
the same functional form as the one in equation (68), but differ
in coefficients and the dimensions of spin matrices. Notice
that the Berry connection for the HH–LH complex in table 1
looks very different from the one in [11] (see equation (D.1)
in appendix D). The parent theory there is the four-band
Luttinger model, instead of the eight-band Kane model. The
Berry curvature generated from the R in equation (D.1) in fact
is zero, indicating a ‘flat’ space (see the discussion near the end
of section 5.1). On the other hand, the Berry connection for the
HH–LH complex in table 1 yields a non-zero Berry curvature.
Because of equation (52), this gives a correction to the result
in [11] (see appendix D).

6.2. Berry curvature, orbital moment, and equations of motion

The Berry curvature can be calculated from equation (5) once
the Berry connection is known, while the angular momentum is
most easily calculated from equation (51). Notice that, in order
to calculate L, the knowledge of off-diagonal R is required
(see equation (C.5) in appendix C). Here we simply show the
result. For the conduction band, to the lowest non-trivial order,
one has

F = 2V 2

3

[
1

E2
g

− 1

(Eg +
)2

]
σ , (70)

9 This result remains valid up to a SU(2) gauge rotation.

Table 1. Berry connection, Berry curvature, and orbital angular
momentum of the electron wavepacket in three disjoint subspaces of
the eight-band Kane model. Only the leading order (in k) terms are
shown. Eg and 
 are the energy gaps in figure 4,
V = h̄〈S|px |X〉/m0, and J is the spin-3/2 matrix operator.

Conduction band HH–LH complex Split-off band

R V 2

3 [ 1
E2

g
− 1

(Eg+
)2 ]σ × k − V 2

3E2
g
J × k − V 2

3
1

(Eg+
)2 σ × k

F 2V 2

3 [ 1
E2

g
− 1

(Eg+
)2 ]σ − 2V 2

3E2
g
J − 2V 2

3
1

(Eg+
)2 σ

L − 2m0V 2

3h̄ ( 1
Eg

− 1
Eg+
)σ − 2m0

3h̄
V 2

Eg
J − 2m0

3h̄
V 2

Eg+
σ

and

L = −2m0V 2

3h̄

(
1

Eg
− 1

Eg +


)
σ . (71)

For a semiconductor electron, the E0 in equation (11)
should have already included the Zeeman energy from the spin
magnetic moment. Through the Zeeman term in equation (11),
the orbital magnetic moment generated from equation (71)
contributes an extra g-factor,

δg = −4

3

m0V 2

h̄2

(
1

Eg
− 1

Eg +


)
. (72)

This is of course the familiar anomalous g-factor of the
conduction electron. This result gives the clearest possible
interpretation of the textbook formula [67]: the anomalous g-
factor in solid is indeed a result of the self-rotating motion of
the electron wavepacket.

The Berry curvatures and orbital angular momenta for the
other two wavepacket subspaces can be found in table 1.

Finally, we selectively comment on the electron dynamics
in the HH–LH complex using the semiclassical equations of
motion. For brevity, the subscripts c in rc and kc are dropped.
In order to focus on the effect introduced by the applied field,
we set γ = 0 to avoid the complication from internal spin–
orbit coupling. Therefore, this is only a toy-model calculation.
Whenever necessary, one can always numerically solve the
coupled dynamical equations with realistic parameters without
difficulty.

In the simplest case, one applies only a constant electric
field (B = 0). The anomalous velocity in equation (18) due to
the Berry curvature is −2eV 2/(3E2

g)E × J, where J = 〈J 〉.
Being transverse to the electric field and spin dependent, it is
in fact a spin Hall current.

From the equation of spin precession in equation (21), one
obtains

J̇ = κμB/h̄

Eg/m0c2
Beff × J, (73)

where κμB ≡ eV 2/(3h̄ Eg), and Beff = E × h̄k/(m0c2). The
spin simply precesses around the effective magnetic field in its
own reference frame.

In the presence of a constant magnetic field (E = 0),
the dynamics of the HH–LH wavepacket is slightly more
complicated [68]. To linear order of the field, the quasi-
momentum decouples from the other degrees of freedom, h̄k̇ =
(−e/h̄)∂E0/∂k × B, where E0 = −γ1h̄2k2/2m0. The orbit
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thus lies at the intersection of the Fermi surface and a plane
perpendicular to the magnetic field. The component k‖ parallel
to the magnetic field is a constant of motion. For a circular
orbit, the frequency of rotation is the usual cyclotron frequency
ωc = eBγ1/m0. The result so far is not different from the usual
cyclotron motion without a Berry curvature [69].

The equation of spin precession is

J̇ = ωV

[
B̂ + δB‖(k)+ δB⊥(k)

]
× J, (74)

where ωV ≡ 2κμB B/h̄, δB‖ = −(E0/Eg)k̂⊥ × (k̂⊥ × B̂), and
δB⊥ = −(E0/Eg)k̂‖ × (k̂⊥ × B̂), in which B̂ and k̂‖,⊥ are unit
vectors. The correction terms are negligible when the carrier is
near the band edge (where E0 � 0).

After some inspection, it can be found that the correction
δB⊥ rotates at the cyclotron frequency ωc. On the other
hand, δB‖ is proportional to B sin2 θ(t), where θ(t) is the
angle between B and k(t). It can be steady or oscillating,
depending on whether the orbit is circular or non-circular. In
the simplest case of a circular orbit, the effective magnetic field
is rotating around B with a fixed magnitude, resembling that in
the electron spin resonance. Therefore, the spin would flip back
and forth with a frequency ωc. This is a natural consequence
of combining the circular motion with the spin–orbit coupling.

6.3. Effective Hamiltonians

We can use the generalized Peierls substitution in equation (40)
to obtain the effective Hamiltonians. The canonical
Hamiltonian in equation (41) then has the following form for
the conduction band:

H (r,p) = E0(π)− eφ(r)+αE ·σ ×π + δgμBB · h̄σ

2
, (75)

where E0 includes the Zeeman energy from the bare spin, α is
given below equation (69), and δg is given in equation (72).
The effective Hamiltonian for the spin–orbit split-off band
has a similar form, but with α = −eV 2/[3(Eg + 
)2] and
δg = −4m0V 2/[3h̄2(Eg +
)].

For a wavepacket in the HH–LH complex, one has

H (r,p) = E0(π,J )− eφ(r)+ αE ·J × π

+ δgμBB · h̄J , (76)

where E0(π,J ) is the four-band Luttinger Hamiltonian, α =
−eV 2/(3E2

g), and δg = −2m0V 2/(3h̄2 Eg). These results are
in agreement with those in [23] obtained using the Löwdin
partition.

The semiclassical approach is more than an alternative
derivation of the effective Hamiltonians. It tells an intelligible
story behind the formalism. The various interaction terms in
the effective Hamiltonian have clear interpretations because
of the direct connection with R and L. Furthermore, these
quantities can immediately be integrated with the equations
of motion to study transport properties. Comparing with
other approaches, such as the theory of linear response, this
formulation offers a particularly useful visual guidance when
the dynamics of charge and spin are coupled.

7. Conclusions

The wavepacket dynamics in a solid can successfully explain
various phenomena, such as the Bloch oscillation and the
de Haas–van Alphen effect [69]. In the early primitive
version, the particle velocity is simply the group velocity of
the wavepacket. Over the years, people gradually realized
that the Berry curvature of Bloch states can have important
effect on the electron transport. It contributes to an anomalous
velocity that is crucial to the anomalous Hall effect [3, 8].
Subsequently, the (one-band) semiclassical formalism, with
the Berry curvature included, was developed and applied
successfully to the quantum Hall effect [6, 7]. A more general
framework, allowing, e.g., adiabatic crystal deformation
was then advanced [24]. Generalization of this formalism
to the multi-band case makes it capable of investigating
spintronic transport involving spin or quasi-spin degrees of
freedom [29, 30].

Based on the semiclassical theory, one can use either the
canonical quantization or other methods of quantization to
obtain an effective quantum theory. This review focuses on
the recent progress regarding the canonical quantization of the
multi-band semiclassical theory. Because of this progress, the
two-way passage between semiclassical and quantum theories
is now achieved. We explain in great detail how to use this new
recipe of quantization with the generalized Peierls substitution.
It is applied successfully to the theories of Dirac electrons and
semiconductor carriers.

It is necessary to include the Berry curvature and orbital
moment in order to account for physical effects to first order in
external fields. Furthermore, these gauge-covariant quantities
are also sufficient for building a correct quantum theory.
Although this route for an effective quantum theory is less
direct, it is physically more transparent than other approaches.
Most importantly, an architecture that is rich in concepts is
revealed along the way. For example, we now understand the
deep connection between the Berry connection and the spin–
orbit interaction and the origin of the anomalous g-factor, to
name only two. The wavepacket point of view is certainly both
intuitive and productive.

The re-quantized effective theory can have its own
semiclassical theory, which in turn can be re-quantized.
Therefore, a whole series of effective theories can be
generated. We study the connections between these
hierarchical theories, and explain how the gauge-covariant
quantities, F and L, can be renormalized from one level to
another. We now have a clear overview of these hierarchical
theories. Such a fundamental understanding certainly is not
restricted to solid state physics. It can be valuable to physical
theories in other disciplines.

Most of the topics covered in this review have close
connections with the field of spintronics, which has been
vigorously pursued in recent years. In the past, the Bloch
energy has played a key role in ab initio calculations. The
values are calculated and tabulated for all kinds of crystalline
materials. These results are useful for many purposes, but
are incomplete in light of this work. The other two essential
quantities, F and L, should also be calculated and tabulated
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systematically. Such an endeavor would be very helpful for
researchers to study more intricate electronic properties [70].
This subject is still at its dawning stage. We expect to see more
exciting discoveries ahead of us.
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Appendix A. The Pauli wavepacket

Starting from the non-relativistic Pauli Hamiltonian instead of
the Dirac Hamiltonian, one can study the energy and dynamics
of the Pauli wavepacket. The Hamiltonian can be expanded as

H = H0 +
H + H ′ = 1

2m
(p + eAa)

2 − eφa

+ e

2m
L · B + eE · (r − ra) (A.1)

+ eh̄

2m
σ · B + eh̄

4m2c2
σ · E × (p + eAa) . (A.2)

It consists of the unperturbed Hamiltonian H0 (with two
degenerate bands), the gradient correction 
H , and the
degeneracy-lifting perturbation H ′. The third part H ′ has
been mentioned in section 2 (footnote 3). Its influence on the
equations of motion can be found in [29].

The Pauli Hamiltonian looks lengthier than the Dirac
Hamiltonian. However, the eigenstates |ui〉 of H0 are simply
the unit spinors, (1, 0)T and (0, 1)T. Therefore, based on
equations (4), (5), and (8), one has the trivial result with
R = 0, F = 0, and L = 0. This simplifies the equations
of motion significantly [29],

h̄k̇a = −eE − eṙa × B, (A.3)

h̄ṙa = ∂E0

∂ka
+ η† ∂H′

∂ka
η, (A.4)

ih̄η̇ = H′η, (A.5)

where E0 = h̄2k2
a/2m.

Substituting H′ = eh̄
2m σ · B + eh̄2

4m2c2 σ · E × ka into the
equations above, one immediately has the following equations
of motion:

h̄k̇a = −eE − eṙa × B, (A.6)

ṙa = h̄ka

m
+ eh̄

4m2c2
〈σ 〉 × E, (A.7)

ih̄η̇ = eh̄

2m

(
σ · B + h̄

2mc2
σ · E × ka

)
η. (A.8)

To compare these equations with those of the Dirac
wavepacket in equations (28), (29), and (30), one needs the
following two relations (see equation (40); G is neglected):

rc = ra + R,

h̄kc = h̄ka + eB × R.
(A.9)

One can check that the Lorentz force equation in equa-
tion (A.6) remains valid in either set of variables, (ra,ka) or
(rc,kc). To linear order of fields, one can replace the ka in
equation (A.8) by kc. Therefore, it also gives the same (non-
relativistic) BMT equation as given in equation (30).

There are two main differences between equation (29) and
equation (A.7). First, the velocity transverse to the electric field
in equation (A.7) is smaller by a factor of two if one does not
distinguish between rc and ra . Second, there is no magnetic-
field-related velocity in equation (A.7). If the shift of position
due to the Berry connection is taken into account, then in the
non-relativistic limit one has

Ṙ = eλ2
c

4h̄
〈σ 〉 × E + eλ2

c

4m
B × (ka × 〈σ 〉). (A.10)

The first term compensates the transverse velocity missing
in equation (A.7) (see section 5.2). The second term would
cancel with an extra term from the eB × R shift in momentum.
Therefore, equation (A.7) gives

ṙc = h̄kc

m
+ eh̄

2m2c2
〈σ 〉 × E. (A.11)

The B · F-correction in equation (29) cannot be reproduced
even if the R-shift has been considered. Such a correction
amounts to a spin-dependent mass renormalization, which is
not included in the Pauli equation from the beginning.

Appendix B. Spin precession for a particle with
AMM

As a reference and without going into details, we show the spin
precession equation for a particle with a 
= 0,

〈σ̇ 〉 = e

γmc

[
(1 + γ a)B − a

(h̄kc · B)h̄kc

(γ + 1)m2c2

+ 1

mc2

(
1

γ + 1
+ a

)
E × h̄kc

]
× 〈σ 〉. (B.1)

If the particle is moving with the constraint β ·B = β ·E = 0,
where β = v/c = h̄kc/γmc, then the spin precession follows
〈σ̇ 〉 = ωs × 〈σ 〉, in which

ωs = e

m

[
B

γ
− 1

γ + 1

β

c
× E + a

(
B − β

c
× E

)]
. (B.2)

On the other hand, the velocity vector orbits at a slightly
different frequency, β̇ = ωc × β, in which

ωc = e

m

[
B
γ

− γ

γ 2 − 1

β

c
× E

]
. (B.3)

Unlike the frequency of spin precession, such a frequency is
independent of a. It is not difficult to find that their difference,
ωa = ωs −ωc, is independent of the electric field if γ 2

magic−1 =
1/a. This fact can be used on a beam line to eliminate the
unwanted effect from the confining electric field [71].
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Appendix C. Calculation of the Berry connection

We explain briefly the approach used in calculating the Berry
connection of the conduction band. The connections for other
subspaces can be calculated in a similar manner. For the Kane
model in equation (65), we can separate the Hamiltonian into
the following three parts:

H (k) = H0 + H D
1 (k)+ H OD

1 (k)

=
(

h0 0
0 0

)
+

(
h1 0
0 h′

1

)
+

(
0 M

M† 0

)
, (C.1)

where h0 is the part of the conduction-band Hamiltonian when
k = 0. The rest of the Hamiltonian is separated into H D

1 with
only diagonal blocks, plus H OD

1 with only off-diagonal blocks.
The Hamiltonian can be diagonalized using a unitary

transformation,

H D = e−iS H eiS

= H + i[H, S] − 1
2 [S, [S, H ]] + · · ·

= H0 + H D
1 + H OD

1 + i[H0, S] + i[H D
1 , S]

+ [H OD
1 , S] − 1

2 [S, [S, H0]] + · · · . (C.2)

One divides the hermitian matrix S into the following form:

S =
(

S00 S01

S†
01 S11

)
, (C.3)

where S00 has the same rank as h0. We then demand the
off-diagonal blocks in equation (C.2) to vanish to the leading
power of k. This enables us to solve the off-diagonal part S01,
which has the same power of k as H OD

1 . To linear order of
S, as far as the Berry curvature is concerned, one need not
solve the block-diagonal part S00 since it merely re-shuffles the
basis states of the wavepacket subspace. Such a gauge rotation
would not change the Berry curvature. Once the unitary matrix
U = eiS is known (to this order), the Berry connection can be
calculated using R = iU †∂U/∂k.

For example, the upper block-diagonal part of the Berry
connection is

PURPU = i

2
S†

01

∂S10

∂k
+ H.c., (C.4)

where PU projects to the upper diagonal block. The leading
off-diagonal block is (PL + PU = 1)

PURPL = −∂S01

∂k
. (C.5)

Off-diagonal Berry connection is required in the calculation of
the orbital angular momentum in equation (51).

Appendix D. Berry connection in the Luttinger model

In an earlier study, the Berry connection in the valence band
was investigated based on the four-band Luttinger model [11].
For reference, the result is briefly reviewed here. The Berry
connection calculated using the Luttinger model is (θ and φ
are the angles of k in the spherical coordinate)

R = 1

k
Jy θ̂ − 1

k
(Jx − cosec θJz) φ̂, (D.1)

which generates zero Berry curvature, F = 0.

After being projected to the HH (LH) subspace, one has

PHHRPHH = 3

2k
cosec θσz φ̂,

PLHRPLH = 1

2k
cosec θσz φ̂ − σx

k
φ̂ + σy

k
θ̂ . (D.2)

It has been emphasized [11] that the Berry connection for the
HH states (with m j = ±3/2) is diagonal (Abelian) because
the vector operator i∂/∂k cannot connect states differing in
angular momentum by more than one. On the other hand,
the connection of the LH states is non-Abelian. The projected
Berry connection generates a non-zero Berry curvature in each
of their own subspaces, F ′

HH/LH = ∓3/(2k2)σzr̂ . They have
the same form as a magnetic monopole field in the k-space with
a charge ∓3/2σz .

According to the renormalization relations in equa-
tion (52), since the HH–LH complex inherited a Berry connec-
tion from the four remote bands in the Kane model, the Berry
curvature of the HH (or LH) subspace would obtain a correc-
tion,

FHH/LH = F ′
HH/LH + PHH/LHFp PHH/LH, (D.3)

where Fp is the curvature of the HH–LH complex listed in
table 1 and PHH/LH is the projection from four bands to two
bands.
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