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Abstract

Optical absorption of quantum dots is investigated using the adiabatic approach, in which a Fröhlich-type interaction between
electron–hole pair and longitudinal optical phonons has been assumed. The role of the finite barrier potentials in predicting the mag-
nitude of the Huang–Rhys factors is considered. For the small GaAs/AlAs quantum dots, the Huang–Rhys factors are found to be
larger than those in the bulk phase by one to two orders of magnitude. The absorption and photoluminescence spectra of such nano-
structures are analyzed.
� 2004 Published by Elsevier B.V.
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1. Introduction

Theoretically, the response of one or several electron–
hole pairs (EHPs) is often invoked to explain the optical
spectra of semiconductor quantum dots (QDs). The adi-
abatic approximation is frequently used when the elec-
tron–phonon coupling is taken into account. It is
widely accepted that a strong quantum confinement of
the electron or a strong electron–phonon interaction,
which result in increasing of kinetic energy of the elec-
trons, are circumstances which justify an adiabatic treat-
ment (see, e.g. [1]). The ineffectiveness of the electron–
phonon coupling implies weak phonon-induced mixing
between the energy levels of QD. On the other hand,
when the level spacing becomes comparable with the
optical phonon energy (see, e.g. [2]), the phonon mixing
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of the EHP states becomes important. In this case, the
phonon-assisted absorption is a more probable process
and a nonadiabatic approach is demanded. Such a non-
adiabatic treatment is used to explain the discrepancy
between the large values of Huang–Rhys factors found
experimentally and the smaller ones predicted by adia-
batic treatment [3]. On the other hand, for small QDs
there are experimental reports of large values of
Huang–Rhys factors (by two orders of magnitude larger
than in the bulk phase). In such cases the mixing effect
induced by phonons becomes less important as the in-
ter-level energy is usually much larger than the LO pho-
non energy and the optical processes are adiabatic. The
problem of Huang–Rhys factor of small QDs, where
nonadiabatic effects are expected to be insignificant
and the adiabatic approach appropriate, is addressed
in this paper. We provide an explanation for the exper-
imental observation of increasing Huang–Rhys factor
with decreasing of QD radius.

We use a simple model to describe the interaction be-
tween photon, EHP, and phonon. Thus, to investigate
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the phonon-assisted optical processes, we consider the
limit of low excitation intensities and work within the
framework of the adiabatic Huang–Rhys-type treatment
[4]. To model small GaAs microcrystallites embedded in
AlAs matrix, we choose spherical symmetry and finite
confinement potentials for both electron and hole, iso-
tropic and parabolic electron and hole bands [5,6], and
consider the effective mass approximation and pure
EHPs. Moreover, in the case of small QDs that we ana-
lyze, the Coulomb electron–hole interaction can be con-
sidered as a perturbation to the confinement potential
[7], which can be neglected in the zeroth order approxi-
mation. Though simple, the adopted QD model is accu-
rate enough for the considered application, as we shall
argue. Though the calculation of the optical spectra is
common in the literature [8], we present a procedure of
deriving the linear absorption coefficient, which can be
used for both adiabatic and nonadiabatic cases (the latter
is investigated in [9]). Then, the optical selection rules, the
Huang–Rhys factors, the spectra of absorption and pho-
toluminescence (PL) are obtained for spherical QDs. The
use of the adiabatic approach is justified and the range of
its validity discussed. We find that, for small QDs, the
adiabatic treatment is able to predict values of Huang–
Rhys factors larger than in the bulk phase by one to
two orders of magnitude.

1.1. Optical absorption coefficient

To describe the confined EHP, we use the
Hamiltonian

H ¼ Hp þ Hph þ Hp�ph
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in which f labels the EHP eigenstate, Hp|fi = Ef|fi, xq is
the frequency of the mode with the wavevector q,
Bþ
f ðBf Þ and bþ�q ðbqÞ are the creation (annihilation) oper-

ators of EHP and phonon, respectively, and Mf
q is the

EHP–phonon coupling. The EHPs are considered as bo-
sons, a valid approximation in the dilute limit. The radi-
ation field is modeled as a single mode of linearly
polarized plane wave. In the limit of linear response the-
ory and long-wave approximation, the semi-classical
EHP-field interaction can be written as [10,11] Hp�F =
2eF0(m0x)

�1[
P

f 5 0h0|eÆP|fiBf + h.c.]sinxt, with m0, e

the mass and the charge of electron, e, x, F0, the polari-
zation vector, frequency, and amplitude of light wave,
and P �

P
ipi the total electronic momentum (with pi

the electron momentum). Initially, the electrons are in
the ground electronic state |0i (EHP vacuum state) and
the phonons are at thermal equilibrium. Applying the
Fermi Golden Rule to the eigenstates of the system and
using the algebra of bosonic operators, the linear one-
EHP absorption coefficient may be written as
aðxÞ ¼ 2pe2

ncm2
0�hxV 0

Z 1

�1
dt expðixtÞ

X
f 6¼0

Df hBf ðtÞBþ
f i;

ð2Þ

where V0 is the volume of the absorptive system, c the
speed of light in vacuum, n the refractive index, Df �
|h0|(e Æ P)|fi|2, hBf ðtÞBþ

f i ¼ h0jhexpðitH=�hÞBf expð�itH=�hÞ
Bþ
f i0j0i, and h� � �i0 � Tr[q0� � �] the trace over the pho-

nonic modes with q0 the equilibrium density matrix of
phonons. To solve Eq. (2), we introduce the time evolu-
tion operator, U(t) � exp(itH0/⁄)exp(�itH/⁄), with
H0 = Hp + Hph and obtain h~Bf ðtÞBþ

f i0 ¼ h0
jBf hUðtÞi0Bþ

f j0i ¼ h0jBf hT̂ exp½�i
R t
0
dt1 ~V ðt1Þ=�h�i0Bþ

f j0i,
where T̂ is the time-ordered operator, and
~V ðtÞ � expðitH 0=�hÞHp�ph expð�itH 0=�hÞ. With the usual
expansion of the time evolution operator [8a] and the
Wick�s theorem for bosons, Eq. (2), which assumes a lin-
ear coupling, can be resumed. In the framework of the
Einstein model (xq ! x0), the bosonic Green�s function
of Eq. (2) yields a form similar to the well-known adia-
batic spectral function for fermionic carriers [4,5,8a]

aðxÞ ¼ 4p2e2

ncm2
0�hxV 0

X
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� dðx� xf þ Df � nx0Þ
�
; ð3Þ

where In are the modified Bessel functions,
Df ¼ x0

P
qðjMf

q j�h�1x�1
0 Þ2 � x0gf is the phononic in-

duced renormalization of EHP energy, and gf is the
Huang–Rhys factor. However, this similarity is to be ex-
pected for an adiabatic treatment, as long as the EHP
model adopted by us does not involve electron–hole
interaction. The relative intensity of the absorption lines
is given by the coefficients of Dirac delta functions. Eq.
(3) assumes the form reported in [5] and, in addition,
may be used to estimate the absolute value of the absorp-
tion coefficient.
1.2. Quantum dot model

Within the effective mass approximation, a spherical
model is considered for the case of size-quantized ener-
gies of QD (or equivalently, QD with dimensions smal-
ler than its corresponding exciton Bohr radius) [7]. Such
a case is suitable for an adiabatic treatment as long as a
typical Coulomb term, responsible of the excitonic ef-
fect, e2/(4pje0reh) (j the vacuum dielectric permittivity,
e0 the static relative dielectric permittivity, and reh the
electron–hole distance) has an energy of the order of
longitudinal optical (LO) phonons.

The confinement potential energy is Ve(re) = 0 for
re2[0,R0 ], and Ve(re) = V0e for re>R0 (similar equation
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is written for holes by replacing re by rh); R0 is the QD
radius. The envelope wave function is unlm(r) =
Rnl(r)Ylm(h,u), where Rnl(r) is the radial and Ylm(h,u)
the spherical harmonics function. Generally, the LO
phonons are considered as the main contributors to
the electron–phonon interaction in polar semiconduc-
tors. An important aspect is that, by choosing finite con-
finement potentials for both electrons and holes, a non-

vanishing EHP–phonon interaction is obtained. The
EHP state may be written as jf i ! juabi ¼R
dre drhuaðreÞubðrhÞacþe avhj0i, where acþe ðavhÞ are the crea-

tion (annihilation) operator of an electron in the con-
duction band at re (valence band at rh) and a(b) holds
for the set of quantum numbers ne, le, me (nh, lh, mh)
of electrons (holes). The optical selection rules are deter-
mined by the matrix element hf|e Æ P|0i of Eq. (2). Using
the pure EHPs eigenstates and an appropriate definition
of the momentum [12], P ¼ p0cv

R
dRacþR avR þ h:c:, where

p0cv is the momentum matrix element between the va-
lence-band and the conduction-band at the C point
and R integrates over unit cells, one obtains
huabjPj0i ¼ p0cvdlelhdmemh

R1
0 dr r2RneleðrÞRnhlhðrÞ � p0cvdmemh

Anenhl, with le = lh = l (see also [7]). Thus, the optical
selection rule requires le = lh. We model the electron–
phonon interaction by the Fröhlich interaction between
electrons and dispersionless bulk LO phonons, which is
an acceptable approach for QD with high geometrical
symmetry, where the interface modes are usually weak
[5,13]. Within the pure-EHP approximation the EHP–
phonon interaction reads

Mf
q ! V �1=2

0 f0q�1

�
Z

dre drhu
�
aðreÞu�

bðrhÞuaðreÞubðrhÞ

� ½expðiqreÞ � expðiqrhÞ�; ð4aÞ

which for spherical QDs becomes

Mf
q ! Mab

q ¼ V �1=2
0 f0q�1
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2 � RnhlðrÞ
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h i

Qlmðq; rÞ

� V �1=2
0 f0q�1vabq ; ð4bÞ

where f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�hx0e2ðe�1

1 � e�1
0 Þj�1

p
is the Fröhlich cou-

pling constant, x0 is the LO phonon frequency, and
Qlmðq; rÞ �

R
dXY m�

l ðXÞY m
l ðXÞ expðiqrÞ ¼

P2l
l0¼0i

l0 ð2l0 þ 1Þ
jl0 ðqrÞhl0l00jl0ihl0l0mjlmi: jl0 ðxÞ are the spherical Bessel
functions, and h� � �Æ|ÆÆi are the Clebsch–Gordan coeffi-
cients. The last equality is obtained by using the expan-
sion of plane waves, expðiqrÞ ¼

P1
l0¼0ð2l

0 þ 1Þil0jl0 ðqrÞ
P l0 ðcos hÞ, the addition theorem of the spherical harmon-
ics to expand the Legendre polynomials P l0 ðcos hÞ, and
the integration of three spherical harmonics over the so-
lid angle. The Huang–Rhys factors corresponding to the
state |uabi are obtained from

P
qjMab

q j
2 ! f 2

0 ð2p2Þ�1R1
0

dqjvabq j
2 by manipulating the spherical and modified
spherical Bessel functions contained in the radial func-
tions Rnl. After averaging over polarization directions,
one obtains a factor 1/3 and therefore Df !
jp0cvj

2A2
nenhl

=3 in Eq. (3).
2. Application and discussions

Though simple, the pure EHP model can pass certain
tests concerning its accuracy in describing the spherical
QDs. Thus, the GaAs conduction band shift induced by
the strains when a GaAs sphere is embedded in AlAs is
insignificant as the two semiconductors are lattice-
matched (less than 10 meV, see [14]). That allows, in a
first approximation, neglecting the strain effects in such
semiconductor heterostructures. Also, comparing with
results from [6], where one uses finite potential barrier
to obtain the excitonic states, the EHP model slightly
overestimates the values of energy levels (for example,
less than 50 meV at R0 = 25 Å for the first excitonic
state). Regarding the band structure of GaAs/AlAS
heterostructures, the interplay of the three lowest minima
C, L and X for GaAs and AlAs yields a spatial confine-
ment only for the C electrons (see e.g. [15]) and the energy
gap is dictated by the Cminimum. On the other hand, as
reported in [16], the complexity of valence band structure
and the band mixing effects become less significant for
smaller spherical QDs and a one-band calculation of
the energy structure is a satisfactory approximation.

Compared to [17], which also considers finite confine-
ment potentials (and, in addition, excitonic and image
charge effects) to describe spherical quantum dots
embedded in a matrix, the present model takes into ac-
count the difference in the effective masses between the
nanosphere and its surroundings. Following [18], the
expression of orthonormalized Rnl(r) and the secular
equation of energy are as follows:

RnlðrÞ ¼
ffiffiffiffiffi
2

R3
0

s
j2l ðxÞkl�1ðyÞklþ1ðyÞ � k2l ðyÞjl�1ðxÞjlþ1ðxÞ
� �

�
klðyÞjlðxr=R0Þ; r < R0;

jlðyÞklðxr=R0Þ; r < R0;

�
ð5aÞ

m2xklðyÞj0lðxÞ ¼ m1yjlðxÞk0lðyÞ; ð5bÞ
where x¼R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m1En;lÞ=�h2

q
, y¼R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2ðV c

0 � En;lÞÞ=�h2
q

,
kl the modified spherical Bessel functions, m1 (m2) the
effective mass in the dot (surrounding medium), V c

0 the
band offset of the carriers, and n, l! ne, le or nh, lh
for electron and hole, respectively. For GaAs microcrys-
tallites embedded in AlAs matrix, the compound ad-
dressed in our application, we use the parameters of
material from [6]: the GaAs energy gap Eg = 1.5177 eV,
the GaAs (AlAs) electron effective mass me/m0 =
0.0665 (me/m0 = 0.124), the hole effective mass mh/
m0 = 0.45 (mh/m0 = 0.5), the conduction band offset
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V e
0 ¼ 0:968 eV, and the valence band offset V h

0 ¼ 0:6543
eV. The energy spectrum is obtained from Eq. (5b), and
the EHP energy Ene ;le;nh;lh ¼ Eg þ Ene ;le þ Enh ;lh is com-
puted as a function of the QD radius and shown in
Fig. 1. Some particular levels are labeled by the set of
quantum numbers, (ne,le;nh, lh) as follows: A0 !
(1,0;1,0), B ! (1,0;1,1), C! (1,0;1,2), D0 ! (1,0;2,0),
E ! (1,1;1,0), F ! (1,0;2,1), G0 ! (1,1;1,1).Based on
the distribution of energy levels and taking into account
the exciton Bohr radius (larger than 100 Å), we consider
R0 = 50 Å as a reasonable upper-limit for our approach.
Possible phonon mixing effect could manifest starting
with R0 � 23 Å (see the ellipse mark at Fig. 1), between
the optically active level G0 and the dark level F. But,
the phonon-assisted transition between G0 and D0 is
improbable (at least in the low temperature limit) be-
cause (EE � ED0

)/�hx0 = 3.37 (the LO phonon energy
�hx0 = 36.2 meV). For the first two optically active lev-
els, the adiabatic treatment is safe for R0 < 22 Å and
may be accepted as satisfactory for R0 < 32 Å, beyond
which the C level appears.

The Huang–Rhys factors of the optically active levels
may be obtained with

gne ;l;m;nh;l;m ¼ f 2
0

2p2�h2x2
0

Z 1

0

Z 1

0

drdr0r2r02 RnelðrÞ
2 �RnhlðrÞ

2
h i

� Rnelðr0Þ
2 �Rnhlðr0Þ

2
h iZ 1

0

dqQlmðq;rÞQlmð�q; r0Þ:

ð6Þ

However, extension of the definition of vabq from Eq. (4b)
to dark levels immediately allows an expression to be
obtained for such levels as well. Fig. 2 summarizes our
calculated Huang–Rhys factors for the first two opti-
cally active levels. The values obtained are larger than
those predicted for the GaAs bulk excitons, 0.0079 in
[5]. In the extreme limit of small radius (10 Å), our mod-
el yields values which are by two orders of magnitude
Fig. 1. The energy spectrum of small spherical GaAs/AlAs QDs
within the adopted model.
larger than those for the bulk, but this result must be
considered with reservation because the effective mass
approximation may become questionable at such small
dimensions. We ascribe these large values of Huang–
Rhys factors for the small spherical QDs as the result
of considering finite potential barriers. Given the charge
distribution of an electron (or a hole) in the QD, the
Huang–Rhys factor is related to the difference between
the form factors of electron and hole (see Eq. (4a)).
For an infinite potential, electrons and holes have a zero
charge separation, the same form factor, and the EHP–
phonon coupling vanishes. By choosing finite barriers,
one obtains a charge separation even for the first EHP
state as seen in Fig. 3, where the charge density,
q(r) / r2Rnl(r)

2, with n,l ! ne,h = 1, le,h = 0, is shown.
Besides this charge separation, the other factor involved
in the form factors responsible for the increased Huang–
Rhys in small QDs is the spatial confinement of the
envelope wave function [19]. In their earlier calculation,
Nomura and Kobayashi [5] used an infinite potential
and a valence-band mixing treatment, and obtained
within an excitonic model a Huang–Rhys factor of the
same order of magnitude (but smaller) than for the bulk;
a similar behavior of increasing Huang–Rhys factor
with decreasing QD radius is obtained. Large Huang–
Rhys factor are reported from measurements in small
QDs, where the nonadiabatic effect is expected to be
insignificant and, consequently, the excitonic effect
small. Thus, for our semiconductor compound, values
larger by two orders of magnitude than for the bulk
are reported in [20], where localized EHPs by quantum
wells-QDs intermediate states in GaAs/AlAs superlat-
tices are analyzed. For self-assembled InAs/GaAs QDs,
where the strain, band mixing and shape effects cannot
be neglected, and the simple spherical QD model be-
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comes inadequate, the measured values range from 0.5
for small QDs (below 45 Å) [21] to 0.05 for larger
QDs [22,23]. Given the simplicity of our model, we
may extend the limit of calculation to excited states.
Thus, the Huang–Rhys factor g2 of D0 is slightly larger
than g1 of A0, mainly due to a larger charge separation
for this excited state. On the other hand, for larger radii
we obtain smaller values, close to the values obtained
theoretically for excitonic states of spherical GaAs
microcrystallites in [24].

According to [3], when a EHP recombination occurs,
the intensity of the equilibrium PL spectrum can be
characterized by the product of absorption coefficients,
IPL(x) / x3a(xexc)a(x)/xexc, where xexc is the frequency
of the monochromatic incident radiation. Thus, with
expression from Eq. (3) for the absorption coefficient,
the PL intensity obtained by exciting to level D0 + i Æ LO
(i = 0,1,2, . . .) and recording from the level A0 + j Æ LO
(j = 0,�1,�2, . . .) is written as

IPLðxÞ /
X

iP0;j60

I i 2g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

q� �
Ij 2g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

q� �

� exp �b�h
ðiþ jÞx0

2
þx1

� �� 	

� A2
110e

�ðg1þg2Þð2Nþ1Þ x1 �D1 þ jx0

x2 �D2 � ix0

� �2
"

� d xexc �x2 þD2 þ ix0ð Þd x�x1 þD1 � jx0ð Þ

þA2
120e

�2g2ð2Nþ1Þ x2 �D2 þ jx0

x2 �D2 � ix0

� �2

� d xexc �x2 þD2 þ ix0ð Þd x�x2 þD2 � jx0ð Þ
	
:

ð7Þ

According to the previous discussion regarding the
energy-level distribution, the probability of a sequential
relaxation process of EHP may be neglected for the
range 10–32 Å at low temperatures, and, consequently,
for this range, we may consider emission processes
occurring from the EHP states. Figs. 4(a) and (b) show
the absorption spectra obtained with Eq. (3) and the PL
spectra obtained for a resonant excitation of the level D0

for R0 = 25 Å, in which the line shape has been modeled
by Lorentzians with a width of 15 meV (a limited spec-
tral resolution of experimental equipment is considered,
see e.g. [3]). The familiar LO-phonon sidebands appear
in both the absorption and PL spectra. As expected,
the spectra have weak temperature dependence. The
possibility of non-resonant excitations is reflected by
the presence of the LO peaks on the positive side of
the absorption spectrum. Weaker negative (positive)
lines in the absorption (PL) spectra would disappear at
zero temperature, and appear at temperatures where
LO phononic population becomes significant. The nega-
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tive absorption sidebands implies a direct LO phonon–
photon coupling, highly improbable as the particles
have much different energies. Though possible, to our
knowledge, such a process has not been observed exper-
imentally. Thus, the real presence of negative absorption
sidebands must be further analyzed by relaxation
dynamics studies. On the other hand, the positive PL
sidebands would involve a simultaneous relaxation-re-
combination process of LO phonon and EHP particles.
Though, separately, the two processes have much differ-
ent relaxation times, the obtained PL lines support for-
mation of the EHP-polaron whose relaxation is a one-
step process [25]. The PL spectral line shape has a form
similar to that obtained from the experiments in [21–23],
for InAs/GaAs self-assembled QDs. We perform calcu-
lations for different radii at T = 10 K (not shown in fig-
ures), and find that as the radii values are increased (20
Å/30 Å/50 Å), (i) the absorption strengths for level A0

(D0) increase (decrease), and the ratios for the 0 LO
peaks are approximately 1/1.32/1.6 (3/1.69/1); (ii) the
PL intensities for both A0 and D0 levels decrease, and
the ratios for the 0 LO peaks are approximately 1/0.6/
0.36 and 1/0.21/0.05, respectively.

In conclusion, an adiabatic treatment of the ‘‘bosonic
pure EHPs carriers plus phonons’’ system yields a spec-
tral function similar to the well-known adiabatic spec-
tral function of fermions. The adiabatic approach is
justified in characterizing the optical spectra of small
spherical QDs, unless the optical levels are mixed with
other (optical or dark) levels via phonons. The simple
model of EHP within finite barrier potentials represents
a useful tool in providing, within acceptable limits, the
energy spectrum, the Huang–Rhys factor, and the
description of the absorption and PL spectra of small
spherical QDs. The adiabatic treatment of small spheri-
cal QDs, a case where the nonadiabatic effects can be ne-
glected, yields Huang–Rhys factors larger by one to two
orders of magnitude than those in the bulk phase. A
quantitative analysis, which could predict accurately
the magnitude of the EHP–phonon coupling, requires
refined models for QDs.
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