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Introduction (30-40 mins)

Quantum adiabatic evolution and Berry phase

Electromagnetic analogy

Geometric analogy

Berry phase in solid state physics
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Fast variable and slow variable

• “Slow variables Ri” are treated as parameters λ(t)

(Kinetic energies from Pi are neglected) 

• solve time-independent Schroedinger eq.

, , ,( , ; ) ( ) ( )n n nH r p x E xλ λ λλ ψ ψ=G G G
GG G G G

“snapshot” solution

{ }( , ; , )i iH r p R P
G GG G

electron; {nuclei}

Born-Oppenheimer approximation

e－

H+
2 molecule

nuclei move thousands of times 
slower than the electron

Instead of solving time-dependent Schroedinger eq., one uses
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• After a cyclic evolution

0
, ( ) , (

'

0

(

)

')
T

n

n

E

T

i d t

n

t
eλ λψ ψ
− ∫=G G

Dynamical phase

Adiabatic evolution of a quantum system

0 λ(t)

E(λ(t)) ( ) (0)Tλ λ=
G G

x
x

n

n+1

n-1

• Phases of the snapshot states at different λ’s are 
independent and can be arbitrarily assigned

(
, ( , ( )

)
)

n
n t n t

ieλ λ
γ λψ ψ→G G

G

• Do we need to worry about this phase?

• Energy spectrum:

( , ; )H r p λ
GG G



7

• Fock, Z. Phys 1928
• Schiff, Quantum Mechanics (3rd ed.) p.290

No!

Pf : 

( ) ( )H t i t
tλ λ

∂
Ψ = Ψ

∂
G G=

0
' ( ')( )

,( )
t

nn
i dt E ti

nt e eγ λ
λ λψ

−
Ψ = ∫G G

G

Consider the n-th level,

Stationary, 
snapshot state

, ,nn nH Eλ λψ ψ=G G

, , 0n n ni λ λγ ψ ψ λ
λ
∂

= ⋅ ≠
∂

G G
G�� G

≣An(λ)

( )
, ,' n
n n

ie φ λ
λ λψ ψ=

G
G G

nφ
λ

∂
= −

∂
G

Choose a φ (λ) such that,

Redefine the phase,

Thus removing 
the extra phase

An’(λ) An(λ)

An’(λ)=0
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One problem:

( )Aλφ λ∇ =G
G G

does not always have a       
well-defined (global) solution

Vector flow A
G

Contour of φ

Vector flow A
G

φ is not 
defined here

Contour of φ

0
C
A d λ⋅ =∫
G G

v 0
C
A d λ⋅ ≠∫
G G

v

C
C
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C
1

2

1

－2

0
' ( ')

( ) (0)
C

T
i dti E t

T e eγ
λ λψ ψ

− ∫=G G

Berry’s face
0C C

i dλ λγ ψ ψ λ
λ
∂

= ⋅ ≠
∂∫ G G

G
Gv

• Berry phase (path dependent)

M. Berry, 1984 : 
Parameter-dependent phase NOT always removable!  

1 2
if  0,

C
= + ≠∫ ∫ ∫v ( )1 2 1 2

then  0
−

− = + ≠∫ ∫ ∫ ∫
Phase difference

interference

• Interference due to the Berry phase

a a b

Index n neglected
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• Berry connection (or Berry potential)

• Berry curvature (or Berry field)

( )A i λλ λλ ψ ψ≡ ∇G G
G G

( ) ( )F A iλ λ λλ λλ λ ψ ψ≡ ∇ × = ∇ × ∇G G
G G GG

C C S
A d A daλγ λ= ⋅ = ∇ × ⋅∫ ∫ G
G G G Gv

• Stokes theorem (3-dim here, can be higher)

• Gauge transformation (Nonsingular gauge, of course)

( )

( ) ( )

( ) ( )

i

C C

e

A A

F F

φ λ
λ λ

λ

ψ ψ

λ λ φ

λ λ
γ γ

→

→ −∇

→
→

G
G Gi

G G G G
i

G GG G
i
i

Redefine the phases of 
the snapshot states

Berry curvature nd Berry phase 
not changed

2λ

3λ

1λ

( )tλ
G

C

S

Some terminology
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Analogy with magnetic monopole

( )A i λλ λλ ψ ψ≡ ∇G G
G G

Berry potential (in parameter space)

Berry field (in 3D)

( ) ( )F Aλλ λ≡ ∇ ×
G G GG

S

( )

   =

C C
A d

F da

γ λ λ= ⋅

⋅

∫
∫

G G G

G G
v

Berry phase

Chern number

1 ( ) integer
2 S

F daλ
π

⋅ =∫
GG Gv

Vector potential (in real space)

Magnetic field

( ) ( )B r A r≡ ∇×
GG G G

( )A r
G G

( )

  =
C

S

A r dr

B da

Φ = ⋅

⋅

∫
∫

G G G

G G
v

Magnetic flux

Dirac monopole

1 ( ) integer
4 S

B daλ
π

⋅ =∫
GG Gv
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Example: spin-1/2 particle in slowly changing B field 

BBH Bλ μ σ
=
= ⋅G G

G G

y

z

x
( )B t
G

CS
G

• Real space • Parameter space

spin × solid angle

Berry curvature

(a monopole at 
the origin)

Berry phase

S

1= ( )
2

F da Cγ ± ± ⋅ = Ω∫
G G ∓

yB

zB

xB
( )B t
G

C

E(B)

B

Level crossing at B=0

−

+

2, ,

ˆ1( )
2B BB B

BF B i
B

ψ ψ± ± ±= ∇ × ∇ =G G
G G

∓
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Experimental realizations :

Tomita and Chiao, PRL 1986Bitter and Dubbers , PRL 1987
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• Nontrivial fiber bundle  
Simplest example: Möbius band

• Trivial fiber bundle 
(= a product space)

Examples:

R1 x R1

R1 R1

base

fiber

base space fiber space

Fiber bundle

Geometry behind the Berry phase                          
Why Berry phase is often called geometric phase?
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Base space:     
parameter space

Fiber space:
inner DOF, eg., U(1) phase

• Berry phase = Vertical shift along fiber

Fiber bundle and quantum state evolution            
(Wu and Yang, PRD 1975)

χ = 2 χ = 0

χ =－2

1
2 S

n da
π

= ∫ F

1
2 S

da Gχ
π

= ∫

• Chern number n

φ

(U(1) anholonomy)

For fiber bundle

For 2-dim closed 
surface

～ Euler characteristic χ
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Introduction

Berry phase in solid state physics
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Berry phase in condensed matter physics, a partial list:
1982 Quantized Hall conductance (Thouless et al)

1983 Quantized charge transport (Thouless)

1984 Anyon in fractional quantum Hall effect (Arovas et al)

1989 Berry phase in one-dimensional lattice (Zak)

1990 Persistent spin current in one-dimensional ring (Loss et al)

1992 Quantum tunneling in magnetic cluster (Loss et al)

1993 Modern theory of electric polarization (King-Smith et al)

1996 Semiclassical dynamics in Bloch band (Chang et al)

1998 Spin wave dynamics (Niu et al)

2001 Anomalous Hall effect (Taguchi et al)

2003 Spin Hall effect (Murakami et al)

2004 Optical Hall effect (Onoda et al)

2006 Orbital magnetization in solid (Xiao et al)

…
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Berry phase in condensed matter physics, a partial list:
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Berry phase in solid state physics
Persistent spin current 

Quantum tunneling in a magnetic cluster

Modern theory of electric polarization

Semiclassical electron dynamics 

Quantum Hall effect (QHE)

Anomalous Hall effect (AHE)

Spin Hall effect (SHE)

Spin Bloch state

• Persistent 
spin current

• Quantum 
tunneling

• Electri
polarization

• QHE

• AHE

• SHE

c 
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31 ( )P d r r
V

rρ= ∫
GG G

well defined only for finite system 
(sensitive to boundary)

or, for crystal with well-localized dipoles 
(Claussius-Mossotti theory)

Electric polarization of a periodic solid

• P is not well defined in, e.g., covalent crystal:

• However, the change of P is well-defined
ΔP

Experimentally, it’s 
ΔP that’s measured

… …

P
Unit cell
+ －Choice 1 … …

P

+－Choice 2 … …
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Modern theory of polarization

However, dP/dλ is well-defined, even for an infinite system !

2 1( ) ( )dPP d P P
d

λ λ λ
λ

Δ = = −∫

( ( )) i r
nk nk

k ur re λλψ =
nk nk

nk

qP r
L

λ λψ ψ= ∑
Iℓℓ-defined

One-dimensional lattice (λ=atomic displacement in a unit cell)

• For a one-dimensional lattice with inversion symmetry                 
(if the origin is a symmetric point)

0  or  nγ π= (Zak, PRL 1989)

• Other values are possible without inversion symmetry

( )

Resta, Ferroelectrics 1992

where  
2

           
2

nk
n

n

n

kBZ

n

P dk u

q

i u
k

q λ λλ
π

π
γ

∂

=

∂
= ∑∫

∑
Berry potential

King-Smith and 
Vanderbilt, PRB 1993
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0 b a

g1=5 g2=4

……

Berry phase and electric polarization

Rave and Kerr, 
EPJ B 2005

r =b/a

γ1

Lowest 
energy 
band:

← g2=0
γ1=π

Dirac comb model

1
1 2
P q γ

π
Δ

Δ =

similar formulation in 3-dim 
using Kohn-Sham orbitals

Review: Resta, J. Phys.: Condens. Matter 12, R107 (2000)
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Berry phase in solid state physics
Persistent spin current

Quantum tunneling in a magnetic cluster

Modern theory of electric polarization

Semiclassical electron dynamics 

Quantum Hall effect

Anomalous Hall effect

Spin Hall effect
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Semiclassical dynamics in solid

• Bloch oscillation in a DC electric field, 

• cyclotron motion in a magnetic field, 

…

1 n

dk eE er B
dt

Edr
dt k

= − − ×

∂
=

∂

G G GG�=
G

G
=

• Lattice effect hidden in En (k)

• Derivation is harder than expected

Limits of validity: one band approximation

Explains (Ashcroft and Mermin, Chap 12)

Negligible inter-band transition.     

“never close to being violated in a metal”

0 2π

E(k)

x
x

n

n+1

n-1

quantization → Wannier-Stark ladders

quantization → LLs, de Haas - van Alphen effect
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Semiclassical dynamics - wavepacket approach

( , ; , )eff c c c cL r k r k W i H W
t
∂

= −
∂

G GG G �� =

3. Minimize the action Seff[rc(t),kc(t)] and 
determine the trajectory (rc(t), kc(t))
→ Euler-Lagrange equations

k W
G

r WG

( )cr t
G

( )ck t
G

2. Using the time-dependent variational
principle to get the effective Lagrangian
for the c.m. variables

1. Construct a wavepacket that is 
localized in both r-space and k-space 
(parameterized by its c.m.) 

(Chang and Niu, PRL 1995, PRB 1996)

( ) ( , )eff c c c n c cnL k eA r k E r kR= − ⋅ + ⋅ −
G G GG G G�� G
= =

Berry potential

Wavepacket in Bloch band:
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(1 )n
n

dk eE er B
dt

Edr
dt k

k k

= − − ×

∂
= − ×

∂
Ω

G G GG�=
G

G
G GG�

=

Semiclassical dynamics with Berry curvature

• (integer) Quantum Hall effect

• (intrinsic) Anomalous Hall effect

• (intrinsic) Spin Hall effect

“Anomalous”
velocity

If B=0, then dk/dt // electric field

→ Anomalous velocity ⊥ electric field

( )n k knk nkk i u uΩ = ∇ × ∇G G
GG

Berry curvature

Cell-periodic 
Bloch state

0( , ) (
2

)( )n c c n c n c
eE r k E k k B
m
L= + ⋅
GG G GG G

Bloch energy

Wavepacket energy

Zeeman energy due to 
spinning wavepacket

Simple 
and 
Unified

( )( )c cn m W r r v WL k = − ×
G G GGG
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Why the anomalous velocity is not found earlier?
In fact, it had been found by

• Adams, Blount, in the 50’s

Why it seems OK not to be aware of it?

• Space inversion 
symmetry

• Time reversal 
symmetry

( ) ( )n nk kΩ − = Ω
G GG G

( ) ( )n nk kΩ − = −Ω
G GG G

both symmetries

( ) 0,n k kΩ = ∀
G GG

For scalar Bloch state (non-degenerate band):

When do we expect to see it?
• SI symmetry is broken

• TR symmetry is broken

• spinor Bloch state (degenerate band)

• band crossing

( ) 0n kΩ ≠
GG

← electric polarization

← QHE

← SHE

← monopoleAlso,
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Berry phase in solid state physics
Persistent spin current

Quantum tunneling in a magnetic cluster

Modern theory of electric polarization

Semiclassical electron dynamics

Quantum Hall effect

Anomalous Hall effect

Spin Hall effect
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Quantum Hall effect (von Klitzing, PRL 1980)

2 DEG

σ
H

(in
 e

2 /h
)

1/B
1

2

3

Increasing B

classical

EF

AlGaAs GaAs

CB

VB

2 DEG

LLs
Increasing B

Density of states

en
er

gy
EF

B=0

Each LL contributes one e2/h
z

quantum
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1 ( )

dk eE
dt
dr E
dt k

k k

= −

∂
= −

∂
×Ω

G G
=
G

G
=

G GG�

Equations of motion 2

2

2 2

2

2
2

(

(2 )

   =0
(2

)

( )

)

1=
2

filled

filled

x y
fille

z
d

d kJ e r

e d kE k

keJ d k E
h

π

π

π

= −

− ×

⎛ ⎞
⇒ −⎜ ⎟⎜ ⎟

⎝ ⎠

Ω

Ω

∫

∫

∫

G

G

G

G

G�

G
=

H

(In one Landau subband)

σHall conductance

2

H
en
h

σ∴ =

21 intege( r )
2 B

z
Z

k kd n
π

Ω =∫
G

Semiclassical formulation

Quantization of Hall conductance (Thouless et al 1982)

Remains quantized even with 
disorder, e-e interaction       
(Niu, Thouless, Wu, PRB, 1985)

Magnetic field effect 
is hidden here
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Quantization of Hall conductance (II)

In the language of differential geometry,

this n is the (first) Chern number that

characterizes the topology of a fiber bundle  

(base space: BZ; fiber space: U(1) phase)

2 ( )z
BZ BZ

d k k dk A
∂

Ω = ⋅∫ ∫
G G G
vBrillouin zone

Counts the amount of 
vorticity in the BZ

due to zeros of Bloch state 
(Kohmoto, Ann. Phys, 1985)

For a filled Landau subband
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2DEG in a square lattice + a perpendicular B field 
tight-binding model: 

en
er

gy

Magnetic flux (in Φ0) / plaquette

0

1
3

Φ
=

ΦW
id

th
 o

f a
 B

lo
ch

 b
an

d 
w

he
n 

B
=0

LLs

Berry curvature and Hofstadter spectrum

(Hofstadter, PRB 1976)

Landau 
subband



34

C1 = 1

C2 = −2

C3 = 1

Bloch energy E(k) Berry curvature Ω(k) 
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( ) ( )

(

1 1ˆ 2
2 2 2

Berry phase )
m

mC

m

m
C

eBk dk dz m C

C R dk

γ
π

γ

π ⎛ ⎞× ⋅ = + −⎜ ⎟
⎝ ⎠

= ⋅∫

∫
GG

G G
=v

v
Would shift 
quantized cyclotron 
energies (LLs)

Bohr-Sommerfeld quantization

Re-quantization of semiclassical theory

• Bloch oscillation in a DC electric field, 

re-quantization → Wannier-Stark ladders

• cyclotron motion in a magnetic field, 

re-quantization → LLs, dHvA effect

• …

Now 
with 
Berry 
phase 
effect!

( ) ( , )effL k eA r k E r kR= − ⋅ + ⋅ −
G G GG G G�� =

G
=
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Cyclotron 
orbits

BE

k

Novoselov et al, Nature 2005

σHρL

( ) ( ) Ck kπδ γ πΩ = → =
G G

cyclotron orbits (LLs) in graphene

…

12
2 2

C
n FE v eB n γ

π
⎛ ⎞⇒ = + −⎜ ⎟
⎝ ⎠
=

2 12
2 2

C eBk mπ
π
γπ ⎛ ⎞= + −⎜ ⎟

⎝ ⎠ =

( ) FE k kν= =

↔ QHE in graphene

Dirac cone
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Berry phase in solid state physics
Persistent spin current

Quantum tunneling in a magnetic cluster

Modern theory of electric polarization

Semiclassical electron dynamics 

Quantum Hall effect

Anomalous Hall effect 

Spin Hall effect

Mokrousov’s
talks this Friday

Buhmann’s next Thu     
(on QSHE)

Poor men’s, and women’s, 
version of QHE, AHE, and SHE
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Anomalous Hall effect (Edwin Hall, 1881): 

Hall effect in ferromagnetic (FM) materials 

( )

( )

,

( )

AH

AH H

N

A

H HR

H H

H

R M

ρ

ρ

ρ

≡

= +

Anomalous term

The usual Lorentz 
force term

saturation slope=RN

H

ρH

RAHMS

FM material

Ingredients required for a 
successful theory:

• magnetization (majority spin)

• spin-orbit coupling             
(to couple the majority-spin
direction to transverse orbital 
direction)
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gives correct order of magnitude  
of ρH for Fe, also explains     
that’s observed in some data

2
AH Lρ ρ∼

Intrinsic mechanism (ideal lattice without impurity)

• Linear response

• Spin-orbit coupling 

• magnetization
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anomalous velocity due to 
electric field of impurity ～
anomalous velocity in KL

(Crépieux and Bruno, 
PRB 2001)

Alternative 
scenario: 

Extrinsic

Smit, 1955: KL mechanism should be annihilated by 

(an extra effect from) impurities

mechanisms 
(with 
impurities)

• Side jump (Berger, PRB 1970)

• Skew scattering (Smit, Physica 1955) 
～ Mott scattering

1Aδ ≈

Spinless
impurity

e－

e－

2
AH Lρ ρ∼

AH Lρ ρ∼

Review: Sinitsyn, J. Phys: Condens. Matter 20, 023201 (2008)

2( ) ( )AH L La M b Mρ ρ ρ= +2 (or 3) mechanisms:

In reality, it’s not so clear-cut !
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CM Hurd, The Hall Effect in Metals and Alloys (1972) 
“The difference of opinion between Luttinger and 
Smit seems never to have been entirely resolved.”

30 years later:
Crepieux and Bruno, PRB 2001
“It is now accepted that two mechanisms are 
responsible for the AHE: the skew scattering…
and the side-jump…”
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Mired in controversy from the start, it simmered for a long time
as an unsolved problem, but has now re-emerged as a topic 
with modern appeal. – Ong @ Princeton

Karplus-Luttinger mechanism:

Science 2001
However,

Science 2003

And 
many 
more …
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Ideal lattice without impurity

Berry curvature of fcc Fe
(Yao et al, PRL 2004)

2 3

3 ( 0
(2

)
)AH

filled

d k keσ
π

Ω= ≠∫
GG

=

Karplus-Luttinger theory (1954) 

= Berry curvature theory (2001)

• same as Kubo-formula result

• ab initio calculation

→ intrinsic AHE

Old wine in new bottle
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• classical Hall effect

B

+++++++

B
↑↑↑↑

↑↑↑↑↑↑↑
↑↑↑↑

↑↑

↑↑↑↑↑↑↑

↑↑↑↑↑↑↑
↑↑↑↑

↑↑↑↑

• spin Hall effect

• anomalous Hall effect

Berry curvature

Skew scattering

No magnetic field required !

Lorentz force

Berry curvature

Skew scattering

EF

y
0 L

↑↓

charge

EF

y
0 L

↑ ↓

charge
spin

EF

y
0 L

↑ ↓

spin
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Band structure

Murakami, Nagaosa, and Zhang, Science 2003:

Intrinsic spin Hall effect in semiconductor

• Spin-degenerate Bloch state 
due to Kramer’s degeneracy

→ Berry curvature becomes a 
2x2 matrix (non-Abelian)

The crystal has both
space inversion symmetry  
and time reversal symmetry !

• (from Luttinger model)     
Berry curvature for HH/LH

2

ˆ3( )
2HH z
kk
k

= −Ω σ
GG

4-band 
Luttinger
model

( )n
n

E k edx
dt k

E∂
= −

∂
× Ω

GG
G

=

GG
=

Spin-dependent 
transverse velocity 
→ SHE for holes
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Only the HH/LH can have SHE?  

• Berry curvature for 
conduction electron:

8-band 
Kane 
model

1( )O kα= +Ω σ
G

spin-orbit 
coupling strength

: Not really

Chang and Niu, J Phys, Cond Mat 2008

2
1( )

2
C O kλ

= − +Ω σ
G

• Berry curvature for 
free electron (!):

12

/

10 m
C mcλ

−

=

≈

=

mc2
electron

positron

Dirac’s 
theory



47Observation of Intrinsic SHE?

Observations of SHE (extrinsic)

Nature 2006

Science 2004

Nature Material 2008
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• Summary
Spin Bloch state

• Persistent 
spin current

• Quantum 
tunneling

• Electr
polarization

• QHE

• AHE

• SHE

ic 

L(k)Ω(k)

E(k)

• Three fundamental quantities in any crystalline solid

Orbital moment

Bloch energy

Berry curvature
(Not in this talk)
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Slides : 
http://phy.ntnu.edu.tw/~changmc/Paper

Reviews: • Chang and Niu, J Phys Cond Matt 20, 193202 (2008)

• Xiao, Chang, and Niu, to be published (RMP?)


