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Abstract

In this paper, we study electronic screening and its subsequent in0uence on the electron self-energy in quantum Hall
system. We focus on two issues: how the width of quantum well and the strength of disorder a3ect the electron self-energy. It
is found that a wider quantum well has a smaller self-energy correction, and a stronger disorder yields a smaller self-energy
oscillation with respect to the magnetic 4eld. We have also compared the theoretical many-body energy spectra with actual
photoluminescence spectra of a modulation-doped quantum well in a strong magnetic 4eld.
? 2002 Elsevier Science B.V. All rights reserved.
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Calculation of electron self-energy in quantum Hall
system is crucial in understanding phenomena such
as exchange-enhanced Zeeman splitting [1], the blue
shift of photoluminescence (PL) spectrum near integer
4lling factors [2,3], the energy spectrum in modulated
systems [4], and hysteresis e3ect [5,6]. The simplest
many-body correction is calculated using the Hartree–
Fock approximation (HFA). This is not necessarily a
good approximation but often is chosen for its sim-
plicity. In some cases, screened HFA is used [1,4],
but in the absence of justi4cation this may not neces-
sarily yield an improved result over the HFA. In fact,
it is known that, in the 4eld-free case [7], screened
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HFA yields a worse result. Also, in the calculation of
the PL spectrum for a quantum Hall system, using the
screened HFA would predict a red shift, instead of the
observed blue shift, near integer 4lling factors.

In this paper, we calculate the electron self-energy
beyond the screened HFA by including the Coulomb-
hole term. We study in detail the change of self-energy
as various physical parameters, such as the width of
quantum well and the strength of disorder, are changed
[8]. 1 Calculating the conduction electron energy to-
gether with the valence hole energy enables us to
calculate the PL spectra since the latter are largely de-
termined by the energy di3erence between electrons
and holes. The outline of this calculation has been pub-
lished in the study of PL in Refs. [2,3]. It is believed

1 This paper studies how the distance between the electron layer
and the hole layer a3ects the PL spectrum.
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that their calculations are applicable to dirtier samples
where disorder e3ect is dominant, and many-body in-
teractions are added later on as perturbations.

On the contrary, for high mobility samples where
many-body e3ects are dominant, various di3erent
spectral features might appear. For example, the
abrupt red shift near 4lling factor � = 1 has been
attributed to di3erent recombination mechanisms
at � = 1+ and 1− [9–11]. In the vicinity of � = 1
quantum Hall ferromagnet, it costs less energy to
create a skyrmion than to create a quasi-particle.
Therefore, skyrmion-related features of the PL spec-
trum may appear [12–14]. Some groups observed a
low-energy satellite peak in PL as �¿ 2, which has
been explained as a signature of Anderson-Fano-like
resonance [9,11,15]. In other occasions, multiplet
structure near the neutral exciton recombination line
has been observed, which is due to either charged
excitons or low-lying many-body excitations [16,17].
The motivation of this work is to explain the PL
spectra reported in Ref. [18], in which none of these
many-body features seem to be relevant. The ob-
served blue shift near integer 4lling factors is best
explained using Katayama’s and Uenoyama’s slightly
di3erent theories [2,3]. Katayama and Ando use the
plasmon-pole approximation, while Uenoyama and
Sham use the quasi-static approximation, to obtain
the dielectric function. We will follow the latter ap-
proach, which is computationally less involved, but
is expected to be less accurate at high magnetic 4elds
[19].

In the quasi-static random phase approximation,
the electron energy is composed of the bare parti-
cle energy, the screened exchange energy and the
Coulomb-hole energy [20–23]: 2

En = E0
n + �sx

n + �ch
n ; (1)

where E0
n = (n + 1=2)˝!c + ge�eB, n is the Landau

level (LL) index, ge and �e are the e3ective g-factor
and the magnetic moment of electrons, respectively.
For the many-body corrections, we have [3]

�sx
n = −∑

n′

∫
d2q

(2�)2 Ṽ nn′(q)�n′ ;

2 See Appendix B of Ref. [23] for a very nice derivation.

�ch
n =

1
2
∑
n′

∫
d2q

(2�)2 [Ṽ nn′(q) − Vnn′(q)]; (2)

where q is the magnitude of the momentum q,
Vnn′(q) = F⊥(q)F‖

nn′(q)V (q), F⊥(q) is the form
factor of the electron envelope function along the
z-direction, F‖

nn′(q) is the form factor associated with
the Landau orbitals in the x–y plane, and �n is the
electron 4lling factor in the nth LL. The tilde indi-
cates that the Coulomb potential V (q) = 2�e2=�0q is
screened, Ṽ (q) = V (q)=�(q), where �(q) is the static
dielectric function to be explained in more details
below. The form factors are determined by

F⊥(q) =
∫

dz
∫

dz′|�(z)|2|�(z′)|2e−q|z−z′|;

F‖
nn′(q) = |〈n|eiq·� |n′〉|2

=(n′!=n!)(q2l2B=2)n−n
′
e−q

2l2B=2[Ln−n
′

n′ (q2l2B=2)]2

(for n¿ n′); (3)

where �(z) is the electron envelope function along the
z-direction, � is the cyclotron coordinate, lB=

√
˝=eB

is the magnetic length, and L�� are the associated
Laguerre polynomials. Notice that in the self-energy
corrections above, the screened exchange part is a
function of the carrier population. Therefore, for a
system with dilute carriers, such an energy correction
can be neglected because there is almost no quantum
exchange e3ect. This is the case when these formu-
las are used to calculate the self-energy of dilute
photo-excited valence holes in the PL experiment.
Because of the low hole density, the self-energy for
holes are dominated by the Coulomb-hole term only.

The dielectric function describes the e3ectiveness
of screening and it is sensitive to the location of the
Fermi level. The discrete nature of the LLs leads to
prominent variation of this quantity as the magnetic
4eld is changed. It can be separated to a dominant part
related to intra-LL transitions and a minor part related
to inter-LL transitions [3],

�(q) = 1 + F⊥(q)V (q)[D(EF) −�inter(q)]: (4)

The former is proportional to the disorder-broadened
density of states (per unit area) D(E), which is as-
sumed to be a Gaussian (for each LL) with a width �.
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That is,

D(E) =
∑
n

s
2�l2B

√
2
�

e−2(E−En=�)2

�
; (5)

where s (=1 in our case) is the spin degeneracy.
The width � depends on the magnetic 4eld, � =
(�=

√
B)˝!c, in which B is in units of Tesla and � de-

pends on sample quality and is of the order unity. The
inter-LL part �inter(q) is given as

�inter(q) =
s

2�l2B

∑
nn′

�n − �n′
E0
n − E0

n′
|〈n|eiq·� |n′〉|2: (6)

It becomes more important in a weak magnetic 4eld
due to the smaller LL separations. In addition, its
presence is also required for the dielectric function
to satisfy the f-sum rule [3].

Combining this dielectric function with the for-
mulas (1)–(3) above, we have calculated the elec-
tron self-energy for a n-type modulation-doped
InGaAs/GaAs QW. The QW is approximated as a
square well with a height V0 and a width d. The elec-
tron envelope function is approximated as a Gaussian
with a width ", |�(z)|2 =

√
"=�e−"z

2
. It is then con-

venient to obtain an analytic form for the form factor
F⊥(q) = (2=

√
�)eq

2=2"erfc(
√
q2=2"). The width " is

determined by minimizing the electron energy in the
Hatree approximation [24]. For a QW with a height
V0 = 57 meV and a width d = 200 PA [18], the opti-
mized parameter for the Gaussian is "=2:0×10−3= PA2.
For the InGaAs/GaAs QW sample being used in the
PL experiment [18], the electron e3ective mass is
0:0622 me, ge =−2; �0 = 12, and the electron density
after optical pumping is 2:7 × 1011=cm2. The para-
meter � in the LL broadening is chosen as 1=2, which
gives �=4:68 meV at B=10 T. For comparison, the
cyclotron energy is 18:6 meV at 10 T. It is known
that the electron cyclotron energy ˝!c is proportional
to B and typical electron interaction energy e2=�0lB is
proportional to

√
B. For reference, these two energies

become equal at B= 6:32 T.
In Fig. 1, we plot the screened exchange energies

and the Coulomb-hole energies for electrons in the
lowest three LLs. The 4lling factors are 1–3 when the
magnetic 4elds are 11.12, 5.56, and 3:73 T, respec-
tively. When B¿ 11:12 T, the electrons are populated
in the LLL so only �sx

0 and �ch
0 are of interest. As

the magnetic 4eld gets smaller, electrons are popu-
lated in more than one LL and several self-energies
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Fig. 1. Screened exchange energies and Coulomb-hole energies
for the lowest three LLs are shown (� = 1=4). The curves with
downward cusps are �sx

n ; the curves with upward cusps are �ch
n .

Solid lines, dotted lines, and dashed lines are for n = 0; 1, and
2, respectively. The bold solid line below is the total self-energy
for the LLL, which is the sum of the two solid lines above.

for di3erent LLs are plotted. It can be seen that the
Coulomb-hole energies for di3erent LLs have roughly
the same values, which makes the curves diQcult to
be distinguished in weak magnetic 4elds.

At integer 4lling factors, the electron gas is
insulator-like and the screening is less e3ective.
Therefore, there is a larger (in magnitude) negative
screened exchange energy. This leads to the down-
ward cusps in the 4gure. The Coulomb-hole energy
is the energy reduction due to the charge de4ciency
around a charged carrier. At integer 4lling factors, the
electrons are “locked” at their respective Landau or-
bitals, which means that it is more diQcult to distort
the wave function and create a Coulomb hole. There-
fore, the negative Coulomb-hole energy is smaller (in
magnitude) at integer 4lling factors. This gives the
upward cusps in the 4gure. For electrons, the total
self-energy, which is the sum of the two terms above,
is less-sensitive to the 4lling factor because this two
opposite trends from the screened exchange energy
and the Coulomb-hole energy cancel each other [2,3].
(see the bold line in Fig. 1).

Naively, we expect the magnitudes of the cusps
at integer 4lling factors to be proportional to

√
B,

because the electron–electron interaction, which
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Fig. 2. Screened exchange energy and Coulomb-hole energy for
electrons in the LLL. Solid lines are for a QW with width
d=200 PA; dotted lines are for a QW with a width d=300 PA. The
impurity broadening parameter � is 1/4 for both cases. Dot-dashed
lines are for d = 200 PA and � = 1=2.

gives rise to the screened exchange term and the
Coulomb-hole term, is proportional to

√
B. How-

ever, the e3ective interactions in di3erent LLs can
be very di3erent because of the Landau-orbital form
factors F⊥

nn, which reduce rapidly as n gets larger.
This is why the cusps diminish faster than

√
B as B is

decreased.
It is expected that, because the e3ective two-

dimensional Coulomb interaction is reduced in a
wider QW, the self-energy will be smaller. It is
interesting to know quantitatively the connection
between the width of the QW and the self-energy
correction. In Fig. 2, we show the self-energy for
the electrons in the LLL in a wider QW (dot-
ted lines). It can be seen that the energies at the
cusps remain largely unchanged, but the energies
at half-integer 4llings are indeed reduced by sev-
eral meVs. We have also investigated the e3ect of
impurity broadening on the self-energy. In general,
thinner disorder-broadened LLs would give larger
self-energy oscillations. In Fig. 2, we see that as the
parameter � is varied (dot-dashed lines), the cusp en-
ergies also remain largely unchanged. But the energy
shifts at half-integer 4llings are signi4cant. Unlike the
changes due to 4nite QW width that have both �sx
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Fig. 3. Crosses are the PL energies for electrons transiting from
the lowest electron LL to the highest valence hole LL that is
permitted by the selection rule. The part linearly increasing with
B has been removed, as explained in the text. The solid line is
the theoretical result (� = 1=2).

and �ch
0 shift up. The shifts due to impurity broaden-

ing are opposite for �sx
0 and �ch

0 . Therefore, it would
give a very minor change to the total self-energy.
Even though we only show the result for the LLL in
Fig. 2, the behavior for higher LLs are basically the
same.

In Fig. 3, the theoretical PL energy is com-
pared with the experimental data. The PL energy
is the di3erence between the electron energy and
the hole energy, EPL

NN ′ = Ee
N − Eh

N ′ , where Ee
N is

composed of three parts as shown in Eq. (1), Eh
N

is composed of the bare particle energy, to be cal-
culated from the Luttinger formalism [18], and the
Coulomb-hole energy. The selection rule requires
UN = 1, where N = n + mj − 1=2, in which n is
the LL index, and mj is the spin-component in the
z-direction. We have calculated the Coulomb-hole
energy for holes using the following parameters:
hole e3ective mass mh = 0:094me, and the QW at
the valence band has a depth V0 = 68 meV and
a width d = 200 PA. The solid line in Fig. 3 rep-
resents �sx(e)

N + �ch(e)
N − �ch(h)

N ′ . The crosses are
the PL peak energies being measured [18]. To
emphasize the oscillating behavior, we have sub-
tracted from the experimental data a part &B that is
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linearly proportional to the magnetic 4eld. The slope
& (=0:9 meV=T) is the sum of the slopes from
the bare-electron energy and from the hole energy
calculated using the eight-band Luttinger formal-
ism. The data has also been vertically shifted to
4t the curve. The only essential adjustable param-
eter in this calculation is the disorder-broadening
parameter �, which is chosen to be 1=2 for both
the electrons and the holes. It can be seen that
the magnitudes of the dips between the cusps
agree roughly with the experimental data, support-
ing the aforementioned mechanism for the blue
shift.

To summarize, we have investigated in details
the in0uence of the QW width and the impurity
broadening on the self-energy of the electrons in
quantum Hall systems. It is found that a wider quan-
tum well has a smaller self-energy correction, and a
larger level-broadening yields a smaller self-energy
variation with respect to the magnetic 4eld. Com-
parison with experiment shows that the calculation
can explain the observed data reasonably well. These
quantitative results might be helpful for experimen-
talists to 4ne-tune the spectral properties of their
samples.
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